Nav: Home

The gene behind follicular lymphoma

June 28, 2017

Follicular lymphoma is an incurable cancer that affects over 200,000 people worldwide every year. A form of non-Hodgkin lymphoma, follicular lymphoma develops when the body starts making abnormal B-cells, which are white blood cells that in normal conditions fight infections. This cancer is associated with several alterations of the cell's DNA, but it has been unclear which gene or genes are involved in its development. EPFL scientists have now analyzed the genomes of more than 200 patients with follicular lymphoma, and they discover that a gene, Sestrin1, is frequently missing or malfunctioning in FL patients. The discovery opens to new treatment options and it is now published in Science Translational Medicine.

One of the common features of follicular lymphoma is a genetic abnormality between two chromosomes (14 and 18). In an event known as "chromosomal translocation" the two chromosomes "swap" certain parts with each other. This triggers the activation of a gene that protects cells from dying, making cells virtually immortal -- the hallmark of a tumor.

Moreover, approximately 30% of follicular lymphoma patients lose also a portion of chromosome 6, affecting multiple genes involved in suppressing the emergence of a tumor. These patients typically have poor prognosis. Another 20 % of patients have alterations causing chromosomal disorganization and the consequent malfunctioning of several genes and proteins. The bottom line is that for both group of patients it is very difficult to pinpoint which of all the affected genes are actually causing the disease.

The lab of Elisa Oricchio at EPFL, with colleagues from the US and Canada, analyzed the genomes of over 200 follicular lymphoma patients. Their analyses revealed that a specific gene, Sestrin1, can be harmed by both loss of chromosome 6 and silenced in patients.

Sestrin1 helps the cell defending itself against DNA damage -- for example after exposure to radiation -- and oxidative stress. In fact, Sestrin1 is part of the cell's anti-tumor mechanism that stops potentially cancerous cells from growing.

Disruption of a region in chromosome 6 or epigenetic modifications of the DNA block Sestrin1 expression and these contribute to the development of Follicular Lymphoma.

Beyond identifying the Sestrin1 gene as frequently altered in FL patients, the scientists demonstrated that Sestrin1 is able to suppress tumors in vivo. They showed that Sestrin1 exerts its anti-tumor effects by blocking the activity of a protein complex called mTORC1, which is well known for controlling protein synthesis as well as acting as a sensor for nutrient or energy changes in the cell.

Finally, the identification of loss of Sestrin1 as a key event behind the development of follicular lymphoma is particular important because it helps identifying patients that will benefit from new therapies. Indeed, this study shows that the therapeutic efficacy of a new drug that is currently in clinical trial depends on Sestrin1. Importantly, this dependency can be extended beyond follicular lymphoma to other tumor types.
-end-
This work was carried out in collaboration with the Memorial Sloan Kettering Cancer Center (New York), Cornell University, the University of Lausanne, Goodwin Research Laboratories, Trinity College Dublin, the BC Cancer Agency, the University of British Columbia, and the Princess Margaret Cancer Centre (Toronto).

Funding

Swiss National Science Foundation, EPFL's Swiss Institute for Experimental Cancer Research (ISREC), the Giorgi-Cavaglieri Foundation, the National Cancer Institute, the Lymphoma Research Foundation, Mr. William H. Goodwin and Mrs. Alice Goodwin and the Commonwealth Foundation for Cancer Research, the Memorial Sloan Kettering Cancer Center, the National Institutes of Health, the Starr Cancer Consortium, the Geoffrey Beene Cancer Research Center, the Leukemia and Lymphoma Society, and the Princess Margaret Cancer Centre.

Reference

E. Oricchio, N. Katanayeva, M. C. Donaldson, S. Sungalee, P. P. Joyce, W. Béguelin, E. Battistello, V. R. Sanghvi, M. Jiang, Y. Jiang, M. Teater, A. Parmigiani, A. V. Budanov, F. C. Chan, S. P. Shah, R. Kridel, A. M. Melnick, G. Ciriello, H-G. Wendel. Genetic and epigenetic inactivation of SESTRIN1 controls mTORC1 and response to EZH2 inhibition in follicular lymphoma. Science Translational Medicine 9, eaak9969 (2017). DOI: 10.1126/scitranslmed.aak9969

Ecole Polytechnique Fédérale de Lausanne

Related Cancer Articles:

Radiotherapy for invasive breast cancer increases the risk of second primary lung cancer
East Asian female breast cancer patients receiving radiotherapy have a higher risk of developing second primary lung cancer.
Cancer genomics continued: Triple negative breast cancer and cancer immunotherapy
Continuing PLOS Medicine's special issue on cancer genomics, Christos Hatzis of Yale University, New Haven, Conn., USA and colleagues describe a new subtype of triple negative breast cancer that may be more amenable to treatment than other cases of this difficult-to-treat disease.
Metabolite that promotes cancer cell transformation and colorectal cancer spread identified
Osaka University researchers revealed that the metabolite D-2-hydroxyglurate (D-2HG) promotes epithelial-mesenchymal transition of colorectal cancer cells, leading them to develop features of lower adherence to neighboring cells, increased invasiveness, and greater likelihood of metastatic spread.
UH Cancer Center researcher finds new driver of an aggressive form of brain cancer
University of Hawai'i Cancer Center researchers have identified an essential driver of tumor cell invasion in glioblastoma, the most aggressive form of brain cancer that can occur at any age.
UH Cancer Center researchers develop algorithm to find precise cancer treatments
University of Hawai'i Cancer Center researchers developed a computational algorithm to analyze 'Big Data' obtained from tumor samples to better understand and treat cancer.
New analytical technology to quantify anti-cancer drugs inside cancer cells
University of Oklahoma researchers will apply a new analytical technology that could ultimately provide a powerful tool for improved treatment of cancer patients in Oklahoma and beyond.
Radiotherapy for lung cancer patients is linked to increased risk of non-cancer deaths
Researchers have found that treating patients who have early stage non-small cell lung cancer with a type of radiotherapy called stereotactic body radiation therapy is associated with a small but increased risk of death from causes other than cancer.
Cancer expert says public health and prevention measures are key to defeating cancer
Is investment in research to develop new treatments the best approach to controlling cancer?
UI Cancer Center, Governors State to address cancer disparities in south suburbs
The University of Illinois Cancer Center and Governors State University have received a joint four-year, $1.5 million grant from the National Cancer Institute to help both institutions conduct community-based research to reduce cancer-related health disparities in Chicago's south suburbs.
Leading cancer research organizations to host international cancer immunotherapy conference
The Cancer Research Institute, the Association for Cancer Immunotherapy, the European Academy of Tumor Immunology, and the American Association for Cancer Research will join forces to sponsor the first International Cancer Immunotherapy Conference at the Sheraton New York Times Square Hotel in New York, Sept.

Related Cancer Reading:

Best Science Podcasts 2019

We have hand picked the best science podcasts for 2019. Sit back and enjoy new science podcasts updated daily from your favorite science news services and scientists.
Now Playing: TED Radio Hour

Jumpstarting Creativity
Our greatest breakthroughs and triumphs have one thing in common: creativity. But how do you ignite it? And how do you rekindle it? This hour, TED speakers explore ideas on jumpstarting creativity. Guests include economist Tim Harford, producer Helen Marriage, artificial intelligence researcher Steve Engels, and behavioral scientist Marily Oppezzo.
Now Playing: Science for the People

#524 The Human Network
What does a network of humans look like and how does it work? How does information spread? How do decisions and opinions spread? What gets distorted as it moves through the network and why? This week we dig into the ins and outs of human networks with Matthew Jackson, Professor of Economics at Stanford University and author of the book "The Human Network: How Your Social Position Determines Your Power, Beliefs, and Behaviours".