How smart technology gadgets can avoid speed limits

June 28, 2018

Speed limits apply not only to traffic. There are limitations on the control of light as well, in optical switches for internet traffic, for example. Physicists at Chalmers University of Technology now understand why it is not possible to increase the speed beyond a certain limit - and know the circumstances in which it is best to opt for a different route.

Light and other electromagnetic waves play a crucial role in almost all modern electronics, for example in our mobile phones. In recent years researchers have developed artificial speciality materials - known as optomechanical metamaterials - which overcome the limitations inherent in natural materials, in order to control the properties of light with a high degree of precision.

For example, what are termed optical switches are used to change the colour or intensity of light. In internet traffic these switches can be switched on and off up to 100 billion times in a single second. But beyond that the speed cannot be increased any further. These unique speciality materials are also subject to this limit.

"Researchers had high hopes of achieving higher and higher speeds in optical switches by further developing optomechanical metamaterials. We now know why these materials failed to outcompete existing technology in internet traffic and mobile communication networks," says Sophie Viaene, a nanophotonics researcher at the Department of Physics at Chalmers.

To find out why there are speed limits and what they mean, Viaene went outside the field of optics and analysed the phenomenon using what is termed non-linear dynamics in her doctoral thesis. The conclusion she reached is that it is necessary to choose a different route to circumvent the speed limits: instead of controlling an entire surface at once, the interaction with light can be controlled more efficiently by manipulating one particle at a time. Another way of solving the problem is to allow the speciality material to remain in constant motion at a constant speed and to measure the variations from this movement.

But Viaene and her supervisor, Associate Professor Philippe Tassin, say that the speed limit does not pose a problem for all applications. It is not necessary to change the properties of light at such high speeds for screens and various types of displays. So there is great potential for the use of these speciality materials here, since they are thin and can be flexible.

Their results have determined the direction researchers should take in this area of research, and the scientific article was recently published in the highly regarded journal Physical Review Letters. The pathway is now open for the ever smarter watches, screens and glasses of the future.

"The switching speed limit is not a problem in applications where we see the light, because our eyes do not react all that rapidly. We see a great potential for optomechanical metamaterials in the development of thin, flexible gadgets for interactive visualisation technology," says Tassin, an associate professor in the Department of Physics at Chalmers.
-end-
The paper "Do Optomechanical Metasurfaces Run Out of Time?" is written by Chalmers' researchers Sophie Viaene and Philippe Tassin together with Vincent Ginis and Jan Danckaert from the Vrije Universitet Brussels and Harvard University: https://journals.aps.org/prl/abstract/10.1103/PhysRevLett.120.197402?

More about: How nanophotonics and optomechanical metamaterials work:

Nanophotonics is a sub-field of physics which studies how to control and manipulate light by using structured electromagnetic materials.

Light and electromagnetic waves are of crucial importance in our society, for the internet, smartphones, TV screens and so on. But in order to make further progress in developing optics technology, natural materials are no longer adequate. Artificial speciality materials, known as optomechanical metamaterials, are needed to circumvent the limitations inherent in natural materials.

The research involves studying and designing artificial materials in order to develop properties which enable these materials to manipulate electromagnetic waves - ranging from microwaves through terahertz waves to visible light. The researchers design the materials by allowing small electric circuits to replace atoms as the underlying building blocks for the interaction of electromagnetic waves with matter. These structured electromagnetic materials allow components to be designed that can exert high-level control over light with a high degree of precision.

Chalmers University of Technology

Related Physics Articles from Brightsurf:

Helium, a little atom for big physics
Helium is the simplest multi-body atom. Its energy levels can be calculated with extremely high precision only relying on a few fundamental physical constants and the quantum electrodynamics (QED) theory.

Hyperbolic metamaterials exhibit 2T physics
According to Igor Smolyaninov of the University of Maryland, ''One of the more unusual applications of metamaterials was a theoretical proposal to construct a physical system that would exhibit two-time physics behavior on small scales.''

Challenges and opportunities for women in physics
Women in the United States hold fewer than 25% of bachelor's degrees, 20% of doctoral degrees and 19% of faculty positions in physics.

Indeterminist physics for an open world
Classical physics is characterized by the equations describing the world.

Leptons help in tracking new physics
Electrons with 'colleagues' -- other leptons - are one of many products of collisions observed in the LHCb experiment at the Large Hadron Collider.

Has physics ever been deterministic?
Researchers from the Austrian Academy of Sciences, the University of Vienna and the University of Geneva, have proposed a new interpretation of classical physics without real numbers.

Twisted physics
A new study in the journal Nature shows that superconductivity in bilayer graphene can be turned on or off with a small voltage change, increasing its usefulness for electronic devices.

Physics vs. asthma
A research team from the MIPT Center for Molecular Mechanisms of Aging and Age-Related Diseases has collaborated with colleagues from the U.S., Canada, France, and Germany to determine the spatial structure of the CysLT1 receptor.

2D topological physics from shaking a 1D wire
Published in Physical Review X, this new study propose a realistic scheme to observe a 'cold-atomic quantum Hall effect.'

Helping physics teachers who don't know physics
A shortage of high school physics teachers has led to teachers with little-to-no training taking over physics classrooms, reports show.

Read More: Physics News and Physics Current Events
Brightsurf.com is a participant in the Amazon Services LLC Associates Program, an affiliate advertising program designed to provide a means for sites to earn advertising fees by advertising and linking to Amazon.com.