How the flu virus builds a better mousetrap

June 28, 2018

BOSTON (June 28, 2018)--For the first time, scientists have directly visualized in real-time structural changes in the surface protein of the influenza virus that may help the virus to fuse with and enter target cells before hijacking their functions. Researchers at Tufts University School of Medicine found that single molecules of the protein hemagglutinin (HA) that reside on the surface of the virus unfold to stretch toward target cells, then refold and try again 5 to 10 times per second. The discovery shows the flu virus to be more dynamic than previously thought and may help efforts to develop more effective vaccines and better understand other viruses such as Ebola, HIV, and SARS. The research appears in the journal Cell online June 28 and in print August 9.

For decades, influenza has served as the study model for a large class of viruses that enter cells by a common mechanism: An envelope protein on the surface of these viruses must attach the virus to the cell membrane, and then fuse the virus and the cell. Fusion allows release of the virus contents into the cell, so it can take over the cell's internal functions and replicate. Influenza's envelope protein, HA, has long been a template for fusion mechanisms in other viruses.

"Envelope proteins have been described as old-fashioned mousetraps, set in a static, spring-loaded state, waiting to be triggered by interaction with a target cell," said the study's senior author, James Munro, PhD., assistant professor of molecular biology and microbiology at Tufts School of Medicine who also teaches at the Sackler School of Graduate Biomedical Sciences at Tufts. "Once triggered, they undergo a dramatic change in their three-dimensional structure, enabling fusion and entry into the target. However, despite some hints in previous research, this process hadn't been directly observed, and it was widely thought that each protein molecule on the surface of the virus had only one chance to spring its trap."

Using an advanced imaging technology--single-molecule Förster resonance energy transfer, or smFRET, which measures nanoscale distances within single molecules labeled with fluorescent dyes--and then performing significant computational analyses of the data, the Tufts researchers generated the first real-time visualization of the changing shape of individual HA molecules seeking cellular targets. To facilitate the experiments, the HA molecules were imaged while on the surface of an unrelated virus.

What they discovered was a versatile and dynamic mousetrap that was far from the one and done model previously assumed. "The fact that this viral molecule can reconfigure itself, then reverse that configuration and rapidly repeat that sequence multiple times changes the way we think about virus entry," said Munro.

Reversibility may potentially benefit the virus in several ways, including preventing early activation in the absence of an appropriate target, enabling virus molecules to synchronize their efforts to increase efficiency, and confusing a cell's protective antibodies, which must recognize the shape of a virus in order to defend against it.

"Surface proteins are the only part of the virus that the immune system 'sees.' As a result, nearly all known antibodies that inhibit virus replication target these proteins," noted Munro. "We are asking 'What structures does the immune system need to recognize to make more effective antibodies?'."

Research is still needed to prove repeatability and reversibility of these protein dynamics in viruses other than flu, and visualization experiments using inert, non-infectious Ebola particles are underway in Munro's lab. Munro is the recipient of a National Institutes of Health Director's New Innovator Award to support use of single-molecule imaging to investigate how viruses such as Ebola enter host cells.
-end-
Other paper authors are Dibyendu Kumar Das, Ph.D., postdoctoral associate in Munro's laboratory; Ramesh Govindan, student in Tufts' M.D./Ph.D. program at Tufts School of Medicine and the Sackler School at Tufts; Ivana Nikic-Spiegel, Ph.D., of the University of Tübingen; Florian Krammer, Ph.D., of the Icahn School of Medicine at Mount Sinai; and Edward Lemke, Ph.D., of Johannes Gutenberg-University Mainz, Institute of Molecular Biology, Mainz, and the European Molecular Biology Laboratory, Heidelberg.

This work was supported by the National Institute of Allergies and Infectious Diseases (NIAID) of the National Institutes of Health (1DP2AI124384-01, K22AI116262-01), the NIAID Centers of Excellence for Influenza Research and Surveillance program (HHSN272201400008C), and the Gilead Sciences Research Scholars Program.

Das, D., Govindan, R., Nikic-Spiegel, I., Krammer, F., Lemke, E., Munro, J. (2018) Direct visualization of the conformational dynamics of single influenza hemagglutinin trimers. Cell. DOI: 10.1016/j.cell.2018.05.050

About Tufts University School of Medicine and the Sackler School of Graduate Biomedical Sciences

Tufts University School of Medicine and the Sackler School of Graduate Biomedical Sciences at Tufts University are international leaders in innovative medical and population health education and advanced research. Tufts University School of Medicine emphasizes rigorous fundamentals in a dynamic learning environment to educate physicians, scientists, and public health professionals to become leaders in their fields. The School of Medicine and the Sackler School are renowned for excellence in education in general medicine, the biomedical sciences, and public health, as well as for innovative research at the cellular, molecular, and population health level. Ranked among the top in the nation, the School of Medicine is affiliated with six major teaching hospitals and more than 30 health care facilities. Tufts University School of Medicine and the Sackler School undertake research that is consistently rated among the highest in the nation for its effect on the advancement of medical and prevention science.

Tufts University, Health Sciences Campus

Related Immune System Articles from Brightsurf:

How the immune system remembers viruses
For a person to acquire immunity to a disease, T cells must develop into memory cells after contact with the pathogen.

How does the immune system develop in the first days of life?
Researchers highlight the anti-inflammatory response taking place after birth and designed to shield the newborn from infection.

Memory training for the immune system
The immune system will memorize the pathogen after an infection and can therefore react promptly after reinfection with the same pathogen.

Immune system may have another job -- combatting depression
An inflammatory autoimmune response within the central nervous system similar to one linked to neurodegenerative diseases such as multiple sclerosis (MS) has also been found in the spinal fluid of healthy people, according to a new Yale-led study comparing immune system cells in the spinal fluid of MS patients and healthy subjects.

COVID-19: Immune system derails
Contrary to what has been generally assumed so far, a severe course of COVID-19 does not solely result in a strong immune reaction - rather, the immune response is caught in a continuous loop of activation and inhibition.

Immune cell steroids help tumours suppress the immune system, offering new drug targets
Tumours found to evade the immune system by telling immune cells to produce immunosuppressive steroids.

Immune system -- Knocked off balance
Instead of protecting us, the immune system can sometimes go awry, as in the case of autoimmune diseases and allergies.

Too much salt weakens the immune system
A high-salt diet is not only bad for one's blood pressure, but also for the immune system.

Parkinson's and the immune system
Mutations in the Parkin gene are a common cause of hereditary forms of Parkinson's disease.

How an immune system regulator shifts the balance of immune cells
Researchers have provided new insight on the role of cyclic AMP (cAMP) in regulating the immune response.

Read More: Immune System News and Immune System Current Events
Brightsurf.com is a participant in the Amazon Services LLC Associates Program, an affiliate advertising program designed to provide a means for sites to earn advertising fees by advertising and linking to Amazon.com.