Nav: Home

Study: Tau does not stabilize microtubules, challenges approach to treating Alzheimer's

June 28, 2018

A new study by researchers from Drexel University College of Medicine reverses the popular scientific dogma that the protein tau stabilizes microtubules within brain cells. The scientists' new research, published this week in Current Biology, suggests just the opposite: Tau's actual role in the neuron is to allow microtubules to grow and remain dynamic.

This is critical because both the stable and dynamic regions of the microtubule must be present in the brain for successful cognitive function, according to Liang Oscar Qiang, PhD, the study's lead author and a research assistant professor in the College of Medicine.

"We think the reason why the brain has so much tau is to ensure that there is always a robust dynamic component to the microtubules," Qiang said. "Otherwise, without tau, too much of the microtubule mass of the brain would be stable."

This new discovery suggests that microtubule-stabilizing drugs currently in clinical trials may not be effective in treating Alzheimer's and other tau-based neurodegenerative diseases, said Peter Baas, PhD, a professor in the Department of Neurobiology and Anatomy at Drexel College of Medicine and the study's principal investigator.

"The popular theory suggests that patients with neurodegenerative diseases are losing microtubules because they are becoming less stable. What our study suggests is that, with the depletion of tau, patients are in fact losing the dynamic regions of microtubule," said Baas. "So, by treating neurodegenerative diseases with microtubule-stabilizing drugs, the potential exists for making matters worse rather than better."

Microtubules are tubular polymers that make up the infrastructure of a cell and also act as railways to transport organelles throughout the cytoplasm. These intracellular structures have a stable region, as well as a region that remains dynamic, which are both important to their role in a cell.

Tau is one of the hallmark proteins of Alzheimer's disease. In the diseased brain, tau breaks away from microtubules and forms neurofibrillary tangles, blocking nutrient transport to neurons and eventually killing them.

Drugs that affect microtubule stability are currently under investigation as potential therapies for Alzheimer's, because it is nearly universally accepted by the scientific community - evidenced by documentation in hundreds of research papers, websites and instructional materials - that the role of tau is to stabilize microtubules in neurons of the brain, specifically in nerve fibers called axons.

Despite this widespread belief, a research group reported almost 20 years ago that tau may not be responsible for microtubule stability. Drexel researchers decided to delve deeper into the question by depleting tau from cultured rat neurons and comparing microtubule levels in their axons after four days.

They found that the volume of microtubules was reduced in the axon, not due to their destabilization, but rather because of preferential loss of the dynamic regions of the microtubules. In fact, depleting tau made the remaining microtubules more stable, instead of less. This alters our basic understanding about tau.

"We found that tau does not stabilize the neuron's microtubules. The real work of tau is to protect the dynamic regions of microtubules from being stabilized and also to allow them to lengthen," said Baas.

In other words, rather than thinking about tau as a railroad tie - needed at regular intervals to stabilize a track - the protein acts more like a bridge pier, allowing microtubules to remain constantly in motion. Otherwise, the bridge would crack.

The researchers also studied MAP6, which they call a "genuine stabilizer of microtubules," from the cultured neurons, and found that MAP6 spreads out on the microtubule when tau is depleted, which explains why the microtubules become more stable when they lose their tau.

The research team's next steps will be to repeat similar experiments in adult rodent brain. If they can replicate their results, they will seek to "restore what is lost" in the neurodegenerative brain by recovering the lost dynamic regions of the microtubules through novel therapeutic approaches.
-end-


Drexel University

Related Neurons Articles:

A molecule that directs neurons
A research team coordinated by the University of Trento studied a mass of brain cells, the habenula, linked to disorders like autism, schizophrenia and depression.
Shaping the social networks of neurons
Identification of a protein complex that attracts or repels nerve cells during development.
With these neurons, extinguishing fear is its own reward
The same neurons responsible for encoding reward also form new memories to suppress fearful ones, according to new research by scientists at The Picower Institute for Learning and Memory at MIT.
How do we get so many different types of neurons in our brain?
SMU (Southern Methodist University) researchers have discovered another layer of complexity in gene expression, which could help explain how we're able to have so many billions of neurons in our brain.
These neurons affect how much you do, or don't, want to eat
University of Arizona researchers have identified a network of neurons that coordinate with other brain regions to influence eating behaviors.
Mood neurons mature during adolescence
Researchers have discovered a mysterious group of neurons in the amygdala -- a key center for emotional processing in the brain -- that stay in an immature, prenatal developmental state throughout childhood.
Connecting neurons in the brain
Leuven researchers uncover new mechanisms of brain development that determine when, where and how strongly distinct brain cells interconnect.
The salt-craving neurons
Pass the potato chips, please! New research discovers neural circuits that regulate craving and satiation for salty tastes.
When neurons are out of shape, antidepressants may not work
Selective serotonin reuptake inhibitors (SSRIs) are the most commonly prescribed medication for major depressive disorder (MDD), yet scientists still do not understand why the treatment does not work in nearly thirty percent of patients with MDD.
Losing neurons can sometimes not be that bad
Current thinking about Alzheimer's disease is that neuronal cell death in the brain is to blame for the cognitive havoc caused by the disease.
More Neurons News and Neurons Current Events

Trending Science News

Current Coronavirus (COVID-19) News

Top Science Podcasts

We have hand picked the top science podcasts of 2020.
Now Playing: TED Radio Hour

Climate Mindset
In the past few months, human beings have come together to fight a global threat. This hour, TED speakers explore how our response can be the catalyst to fight another global crisis: climate change. Guests include political strategist Tom Rivett-Carnac, diplomat Christiana Figueres, climate justice activist Xiye Bastida, and writer, illustrator, and artist Oliver Jeffers.
Now Playing: Science for the People

#562 Superbug to Bedside
By now we're all good and scared about antibiotic resistance, one of the many things coming to get us all. But there's good news, sort of. News antibiotics are coming out! How do they get tested? What does that kind of a trial look like and how does it happen? Host Bethany Brookeshire talks with Matt McCarthy, author of "Superbugs: The Race to Stop an Epidemic", about the ins and outs of testing a new antibiotic in the hospital.
Now Playing: Radiolab

Speedy Beet
There are few musical moments more well-worn than the first four notes of Beethoven's Fifth Symphony. But in this short, we find out that Beethoven might have made a last-ditch effort to keep his music from ever feeling familiar, to keep pushing his listeners to a kind of psychological limit. Big thanks to our Brooklyn Philharmonic musicians: Deborah Buck and Suzy Perelman on violin, Arash Amini on cello, and Ah Ling Neu on viola. And check out The First Four Notes, Matthew Guerrieri's book on Beethoven's Fifth. Support Radiolab today at Radiolab.org/donate.