Magnetic skyrmions: Not the only ones of their class

June 28, 2018

These objects, which are referred to as "chiral magnetic bobbers", are three-dimensional magnetic structures that appear near the surfaces of certain alloys.

"For a long time, the unique object for research in the field of chiral magnets was the magnetic skyrmion. We now provide a new object for investigation by researchers - a chiral bobber - which is characterized by a number of unique properties", says Dr. Nikolai Kiselev from Jülich's Peter Grünberg Institute (PGI-1). Three years ago, together with the institute's Director Prof. Stefan Blügel and other collaborators, they predicted the existence of this new class of magnetic structures theoretically. Now, researchers from the Ernst Ruska-Centre for Microscopy and Spectroscopy with Electrons (Director Prof. Rafal E. Dunin-Borkowski and his colleagues) have succeeded in demonstrating the existence of chiral bobbers in a real material experimentally.

The stability of magnetic structures such as skyrmions is related to a property of the material known as chirality. Just as a right hand cannot be converted into a left hand for reasons of symmetry, right-handed and left-handed magnetic structures cannot be converted into one another. Furthermore, both skyrmions and the newly-discovered chiral bobbers are very small, with diameters of typically only a few tens of nanometers. Therefore, they can in principle be used to pack data very densely on a memory chip. However, their small size makes their observation highly challenging. "The visualization of magnetic texture on such a small scale requires special state-of-the-art techniques that are accessible in only a few laboratories worldwide", explains Rafal Dunin-Borkowski.

There is another important reason why magnetic solitons (another name for particle-like objects in nonlinear physics) such as skyrmions and chiral bobbers are so promising for applications. In contrast to data bits in hard disk drives, skyrmions are movable objects. Their motion along a guiding track in a chip can be induced by a very weak pulse of electrical current. This property provides new opportunities for the development of a completely new concept of magnetic solid-state memory - the so-called skyrmion racetrack memory. "The mobility of skyrmions allows data to move from write to read elements without the need for any movable mechanical parts such as read and write heads and spining hard disk itself", explains Nikolai Kiselev. This capability saves energy because components that move generally require more energy, occupy more space and tend to be sensitive to mechanical vibrations and shocks. A new solid state magnetic memory would be free of such disadvantages.

The newly discovered magnetic particles now make it possible to encode digital data directly with two different types of magnetic objects, namely with skyrmions and magnetic bobbers.

"Until now, it was assumed that digital data should somehow be represented as a sequence of skyrmions and empty spaces", says Stefan Blügel. The distance between successive skyrmions then encodes binary information. However, it must then be controlled or quantized, so that no information is lost through spontaneous drift of the skyrmions. Instead, the newly discovered three-dimensional magnetic particles offer opportunities to encode digital data directly as a sequence of skyrmions and magnetic bobbers, which can each flow freely without needing to maintain precise distances between successive data bit carriers.

Further research is required to develop practical applications. In the iron-germanium alloy studied by Nikolai Kiselev and his colleagues, the structures are only stable up to 200 Kelvin, which corresponds to -73.5 degrees Celsius. However, based on theoretical considerations, it is predicted that magnetic bobbers may also occur in other chiral magnets and, like some recently discovered species of skyrmions, may also exist at room temperature.
-end-


Forschungszentrum Juelich

Related Data Articles from Brightsurf:

Keep the data coming
A continuous data supply ensures data-intensive simulations can run at maximum speed.

Astronomers are bulging with data
For the first time, over 250 million stars in our galaxy's bulge have been surveyed in near-ultraviolet, optical, and near-infrared light, opening the door for astronomers to reexamine key questions about the Milky Way's formation and history.

Novel method for measuring spatial dependencies turns less data into more data
Researcher makes 'little data' act big through, the application of mathematical techniques normally used for time-series, to spatial processes.

Ups and downs in COVID-19 data may be caused by data reporting practices
As data accumulates on COVID-19 cases and deaths, researchers have observed patterns of peaks and valleys that repeat on a near-weekly basis.

Data centers use less energy than you think
Using the most detailed model to date of global data center energy use, researchers found that massive efficiency gains by data centers have kept energy use roughly flat over the past decade.

Storing data in music
Researchers at ETH Zurich have developed a technique for embedding data in music and transmitting it to a smartphone.

Life data economics: calling for new models to assess the value of human data
After the collapse of the blockchain bubble a number of research organisations are developing platforms to enable individual ownership of life data and establish the data valuation and pricing models.

Geoscience data group urges all scientific disciplines to make data open and accessible
Institutions, science funders, data repositories, publishers, researchers and scientific societies from all scientific disciplines must work together to ensure all scientific data are easy to find, access and use, according to a new commentary in Nature by members of the Enabling FAIR Data Steering Committee.

Democratizing data science
MIT researchers are hoping to advance the democratization of data science with a new tool for nonstatisticians that automatically generates models for analyzing raw data.

Getting the most out of atmospheric data analysis
An international team including researchers from Kanazawa University used a new approach to analyze an atmospheric data set spanning 18 years for the investigation of new-particle formation.

Read More: Data News and Data Current Events
Brightsurf.com is a participant in the Amazon Services LLC Associates Program, an affiliate advertising program designed to provide a means for sites to earn advertising fees by advertising and linking to Amazon.com.