The evolution of testes

June 28, 2018

The loss of anatomical features is a frequent evolutionary event. For example, humans and other great apes have lost their tail and whales have lost their legs. The most convincing evidence comes from the presence of vestiges in fossils. Unfortunately, the fossil record preserves predominantly vestiges of hard structures such as bones or teeth. Consequently, resolving the evolution of soft-tissue structures such as muscle or brain tissue requires analytical methods. A team of researchers from the Max Planck Institute of Molecular Cell Biology and Genetics, the Max Planck Institute for the Physics of Complex Systems, the Senckenberg Natural History Collections Dresden and the Natural History Museum Frankfurt now provide a new approach to resolve the evolution of soft-tissue structures, focusing on the evolution of testes in mammals.

Resolving the evolution of soft-tissue structures, crucially depends on accurate knowledge of the evolutionary relationships between the considered species. If these relationships are not fully resolved, the evolution of soft-tissue structures remains uncertain. Michael Hiller, who is affiliated with the two Max Planck Institutes and the Center for Systems Biology Dresden, says: "Instead of investigating soft-tissue structures directly, we traced the evolution of genes that are required for their formation."

For their investigation, the researchers used the descent of testes as an example. In almost all adult mammals, testes are located either in a scrotum or in the lower abdomen. But testes initially develop deep inside the abdomen at a position close to the kidneys, as seen in mammalian embryos. The final testicular position is the result of a descent process that occurs during animal development. However, several African species such as elephants, tenrecs, golden moles, elephant shrews, manatees, and rock hyraxes differ from the other mammals by lacking any descent and having testes at their initial abdominal position. It is an open question whether these African species lost the testicular descent process or whether other mammals gained that feature. Thomas Lehmann from the Senckenberg Frankfurt adds: "The evolution of testicular descent is controversial, because it is not fully understood how the African species are related to other mammals."

Non-functional genes

"To resolve this controversy, we analyzed DNA sequence data of 71 mammals and discovered that these African mammals possess non-functional remnants of two genes that are strictly required for testicular descent in other mammals" explains Virag Sharma, the first author of the study. This shows that functional versions of these genes were once present in the ancestors of African mammals that lack testicular descent today. These "molecular vestiges" suggest that the testicular descent process took place in the ancestor and was subsequently lost in African mammals.

"Importantly, this conclusion holds regardless of ongoing controversies about the evolutionary relationships among mammals" explains Heiko Stuckas from the Senckenberg Dresden. "The increasing availability of DNA sequence data of many species provides unprecedented opportunities to hunt for molecular vestiges and thus resolve debates on evolution of other anatomical traits" concludes Michael Hiller, who supervised the study.
-end-
Original publication

Virag Sharma, Thomas Lehmann, Heiko Stuckas, Liane Funke & Michael Hiller

Loss of RXFP2 and INSL3 genes in Afrotheria shows that testicular descent is the ancestral condition in placental mammals.

PloS Biology; 28 June, 2018

Max-Planck-Gesellschaft

Related Evolution Articles from Brightsurf:

Seeing evolution happening before your eyes
Researchers from the European Molecular Biology Laboratory in Heidelberg established an automated pipeline to create mutations in genomic enhancers that let them watch evolution unfold before their eyes.

A timeline on the evolution of reptiles
A statistical analysis of that vast database is helping scientists better understand the evolution of these cold-blooded vertebrates by contradicting a widely held theory that major transitions in evolution always happened in big, quick (geologically speaking) bursts, triggered by major environmental shifts.

Looking at evolution's genealogy from home
Evolution leaves its traces in particular in genomes. A team headed by Dr.

How boundaries become bridges in evolution
The mechanisms that make organisms locally fit and those responsible for change are distinct and occur sequentially in evolution.

Genome evolution goes digital
Dr. Alan Herbert from InsideOutBio describes ground-breaking research in a paper published online by Royal Society Open Science.

Paleontology: Experiments in evolution
A new find from Patagonia sheds light on the evolution of large predatory dinosaurs.

A window into evolution
The C4 cycle supercharges photosynthesis and evolved independently more than 62 times.

Is evolution predictable?
An international team of scientists working with Heliconius butterflies at the Smithsonian Tropical Research Institute (STRI) in Panama was faced with a mystery: how do pairs of unrelated butterflies from Peru to Costa Rica evolve nearly the same wing-color patterns over and over again?

Predicting evolution
A new method of 're-barcoding' DNA allows scientists to track rapid evolution in yeast.

Insect evolution: Insect evolution
Scientists at Ludwig-Maximilians-Universitaet (LMU) in Munich have shown that the incidence of midge and fly larvae in amber is far higher than previously thought.

Read More: Evolution News and Evolution Current Events
Brightsurf.com is a participant in the Amazon Services LLC Associates Program, an affiliate advertising program designed to provide a means for sites to earn advertising fees by advertising and linking to Amazon.com.