Nav: Home

Going the distance: Brain cells for 3D vision discovered

June 28, 2019

In stunning images captured under the microscope for the first time, the neurons were found in praying mantises. The work is published in Nature Communications today.

In a specially-designed insect cinema, the mantises were fitted with 3D glasses and shown 3D movies of simulated bugs while their brain activity was monitored. When the image of the bug came into striking range for a predatory attack, scientist Dr Ronny Rosner was able to record the activity of individual neurons.

Dr Rosner, Research Associate in the Institute of Neuroscience at Newcastle University, is lead author of the paper. He said: "This helps us answer how insects achieve surprisingly complex behaviour with such tiny brains and understanding this can help us develop simpler algorithms to develop better robot and machine vision."

The "3D neurons"

Praying mantises use 3D perception, scientifically known as stereopsis, for hunting. By using the disparity between the two retinas they are able to compute distances and trigger a strike of their forelegs when prey is within reach. The neurons recorded were stained, revealing their shape which allowed the team to identify four classes of neuron likely to be involved in mantis stereopsis.

The images captured using a powerful microscope show the dendritic tree of a nerve cell - where the nerve cell receives inputs from the rest of the brain - believed to enable this behaviour.

Dr Rosner explains: "Despite their tiny size, mantis brains contain a surprising number of neurons which seem specialised for 3D vision. This suggests that mantis depth perception is more complex than we thought. And while these neurons compute distance, we still don't know how exactly.

"Even so, as theirs are so much smaller than our own brains, we hope mantises can help us develop simpler algorithms for machine vision."

The wider research programme which is funded by the Leverhulme Trust, is led by Professor Jenny Read, professor of Vision Science at Newcastle University. She says: "In some ways, the properties in the mantises are similar to what we see in the visual cortex of primates. When we see two very different species have independently evolved similar solutions like this, we know this must be a really good way of solving 3D vision.

"But we've also found some feedback loops within the 3D vision circuit which haven't previously been reported in vertebrates. Our 3D vision may well include similar feedback loops, but they are much easier to identify in a less complex insect brain and this provides us with new avenues to explore."

It's the first time that anyone has identified specific neuron types in the brain of an invertebrate which are tuned to locations in 3D space.

The Newcastle team intend to further develop their research to better understand the computation of the relatively simple brain of the praying mantis with the aim of developing simpler algorithms for machine and robot vision.
-end-
Reference: A neuronal correlate of insect stereopsis. Ronny Rosner, Joss von Hadeln, Ghaith Tarawneh, Jenny C.A. Read. Nature Communications. http://dx.doi.org/10.1038/s41467-019-10721-z

Newcastle University

Related Neurons Articles:

The first 3D map of the heart's neurons
An interdisciplinary research team establishes a new technological pipeline to build a 3D map of the neurons in the heart, revealing foundational insight into their role in heart attacks and other cardiac conditions.
Mapping the neurons of the rat heart in 3D
A team of researchers has developed a virtual 3D heart, digitally showcasing the heart's unique network of neurons for the first time.
How to put neurons into cages
Football-shaped microscale cages have been created using special laser technologies.
A molecule that directs neurons
A research team coordinated by the University of Trento studied a mass of brain cells, the habenula, linked to disorders like autism, schizophrenia and depression.
Shaping the social networks of neurons
Identification of a protein complex that attracts or repels nerve cells during development.
With these neurons, extinguishing fear is its own reward
The same neurons responsible for encoding reward also form new memories to suppress fearful ones, according to new research by scientists at The Picower Institute for Learning and Memory at MIT.
How do we get so many different types of neurons in our brain?
SMU (Southern Methodist University) researchers have discovered another layer of complexity in gene expression, which could help explain how we're able to have so many billions of neurons in our brain.
These neurons affect how much you do, or don't, want to eat
University of Arizona researchers have identified a network of neurons that coordinate with other brain regions to influence eating behaviors.
Mood neurons mature during adolescence
Researchers have discovered a mysterious group of neurons in the amygdala -- a key center for emotional processing in the brain -- that stay in an immature, prenatal developmental state throughout childhood.
Connecting neurons in the brain
Leuven researchers uncover new mechanisms of brain development that determine when, where and how strongly distinct brain cells interconnect.
More Neurons News and Neurons Current Events

Trending Science News

Current Coronavirus (COVID-19) News

Top Science Podcasts

We have hand picked the top science podcasts of 2020.
Now Playing: TED Radio Hour

Making Amends
What makes a true apology? What does it mean to make amends for past mistakes? This hour, TED speakers explore how repairing the wrongs of the past is the first step toward healing for the future. Guests include historian and preservationist Brent Leggs, law professor Martha Minow, librarian Dawn Wacek, and playwright V (formerly Eve Ensler).
Now Playing: Science for the People

#566 Is Your Gut Leaking?
This week we're busting the human gut wide open with Dr. Alessio Fasano from the Center for Celiac Research and Treatment at Massachusetts General Hospital. Join host Anika Hazra for our discussion separating fact from fiction on the controversial topic of leaky gut syndrome. We cover everything from what causes a leaky gut to interpreting the results of a gut microbiome test! Related links: Center for Celiac Research and Treatment website and their YouTube channel
Now Playing: Radiolab

The Flag and the Fury
How do you actually make change in the world? For 126 years, Mississippi has had the Confederate battle flag on their state flag, and they were the last state in the nation where that emblem remained "officially" flying.  A few days ago, that flag came down. A few days before that, it coming down would have seemed impossible. We dive into the story behind this de-flagging: a journey involving a clash of histories, designs, families, and even cheerleading. This show is a collaboration with OSM Audio. Kiese Laymon's memoir Heavy is here. And the Hospitality Flag webpage is here.