Nav: Home

New Geosphere study examines 2017-2018 Thomas Fire debris flows

June 28, 2019

Boulder, Colo., USA: Shortly before the beginning of the 2017-2018 winter rainy season, one of the largest fires in California (USA) history (Thomas fire) substantially increased the susceptibility of steep slopes in Santa Barbara and Ventura Counties to debris flows. On 9 Jan. 2018, before the fire was fully contained, an intense burst of rain fell on the portion of the burn area above Montecito, California. The rainfall and associated runoff triggered a series of debris flows that mobilized ~680,000 cubic meters of sediment (including boulders larger than 6 m) at velocities up to 4 meters per second down urbanized alluvial fans. The resulting destruction included 23 fatalities, at least 167 injuries, and 408 damaged homes.

The tragic outcome in Montecito underscores the challenges of rapidly identifying post-fire hazards and risks. Given projected increases in wildfire size and severity, precipitation intensity, and development in the wildland-urban interface, the need to address those challenges is growing.

As part of an effort to improve methods for post-fire risk assessment, the U.S. Geological Survey (USGS) and the California Geological Survey (CGS) spent 12 days immediately following the Montecito debris flows collecting field data to characterize the inundation, flow dynamics, and damage along the five main runout paths. These data provide rare spatial and dynamic constraints for testing debris-flow runout models, which are needed for advancing post-fire debris-flow hazard assessments. They also used the observations of damage in Montecito to develop unique "fragility curves" for wood frame construction. These curves link the probability of damage to measures of debris-flow intensity.

The USGS-CGS team found that the patterns of debris-flow inundation differed substantially from the flow paths expected for ordinary water floods. They also found that road culverts and bridge underpasses, which became choked with debris, played a significant role in causing the widespread damage, because they redirected flow away from the main channels and into neighborhoods. The complexity of the flow paths on the developed fans makes the event a particularly challenging test case for runout models.

It is hoped that subsequent testing of runout models using this data set and combining model results with the fragility curves developed here will help communities better identify their risks following future fires.
-end-
FEATURED ARTICLE

Inundation, flow dynamics, and damage in the 9 January 2018 Montecito debris-flow event, California, USA: Opportunities and challenges for post-wildfire risk assessment

Jason Kean (jwkean@usgs.gov), Jeffrey Coe; Francis Rengers; Dennis Staley; Jeremy Lancaster; Brian Swanson; Janis Hernandez; Aaron Sigman; Kate Allstadt; Donald Lindsay. URL: https://pubs.geoscienceworld.org/gsa/geosphere/article/571496/inundation-flow-dynamics-and-damage-in-the-9.

USGS video: Dennis Staley, second author on the paper, doing fieldwork described in the paper: https://www.usgs.gov/news/usgs-geologists-join-efforts-montecito-assess-debris-flow-aftermath

GEOSPHERE articles are available at http://geosphere.geoscienceworld.org/content/early/recent. Representatives of the media may obtain complimentary copies of GEOSPHERE articles by contacting Kea Giles at the address above. Please discuss articles of interest with the authors before publishing stories on their work, and please make reference to GEOSPHERE in articles published. Non-media requests for articles may be directed to GSA Sales and Service, gsaservice@geosociety.org.

http://www.geosociety.org/

Geological Society of America

Related Fire Articles:

Engines fire without smoke
Car manufacturers could clean up vehicle exhausts using a new model of gasoline combustion developed using experimental data.
Using 'fire to fight fire' to combat disease could make it worse, tests show
A treatment billed as a potential breakthrough in the fight against disease, including cancer, could back-fire and make the disease fitter and more damaging, new research has found.
What's best for birds in fire-prone landscapes?
Two new papers from The Condor: Ornithological Applications demonstrate the complex challenges involved in balancing the management of fire-prone landscapes with the needs of wildlife in the American West.
Are red imported fire ants all bad?
Red imported fire ants have earned a justifiably bad rap across the south and most Texans would be hard put to name a single redeeming quality the ants have.
Fire clues in cave dripwater
When mineral-rich water drips from a cave's ceiling over centuries and millennia, it forms rocky cones that hold clues to the Earth's past climate.
More Fire News and Fire Current Events

Best Science Podcasts 2019

We have hand picked the best science podcasts for 2019. Sit back and enjoy new science podcasts updated daily from your favorite science news services and scientists.
Now Playing: TED Radio Hour

Anthropomorphic
Do animals grieve? Do they have language or consciousness? For a long time, scientists resisted the urge to look for human qualities in animals. This hour, TED speakers explore how that is changing. Guests include biological anthropologist Barbara King, dolphin researcher Denise Herzing, primatologist Frans de Waal, and ecologist Carl Safina.
Now Playing: Science for the People

#534 Bacteria are Coming for Your OJ
What makes breakfast, breakfast? Well, according to every movie and TV show we've ever seen, a big glass of orange juice is basically required. But our morning grapefruit might be in danger. Why? Citrus greening, a bacteria carried by a bug, has infected 90% of the citrus groves in Florida. It's coming for your OJ. We'll talk with University of Maryland plant virologist Anne Simon about ways to stop the citrus killer, and with science writer and journalist Maryn McKenna about why throwing antibiotics at the problem is probably not the solution. Related links: A Review of the Citrus Greening...