Nav: Home

New material shows high potential for quantum computing

June 28, 2019

RIVERSIDE, Calif. -- A joint team of scientists at the University of California, Riverside, and the Massachusetts Institute of Technology is getting closer to confirming the existence of an exotic quantum particle called Majorana fermion, crucial for fault-tolerant quantum computing -- the kind of quantum computing that addresses errors during its operation.

Quantum computing uses quantum phenomena to perform computations. Majorana fermions exist at the boundary of special superconductors called topological superconductors, which have a superconducting gap in their interiors and harbor Majorana fermions outside, at their boundaries. Majorana fermions are one of the most sought-after objects in quantum physics because they are their own antiparticles, they can split the quantum state of an electron in half, and they follow different statistics compared to electrons. Though many have claimed to have identified them, scientists still cannot confirm their exotic quantum nature.

The UCR-MIT team overcame the challenge by developing a new heterostructure material system, based on gold, that could be potentially used to demonstrate the existence and quantum nature of Majorana fermions. Heterostructure materials are made up of layers of drastically dissimilar materials that, together, show completely different functionalities when compared to their individual layers.

"It is highly nontrivial to find a material system that is naturally a topological superconductor," said Peng Wei, an assistant professor of physics and astronomy and a condensed matter experimentalist, who co-led the study, appearing in Physical Review Letters, with Jagadeesh Moodera and Patrick Lee of MIT. "A material needs to satisfy several stringent conditions to become a topological superconductor."

The Majorana fermion, considered to be half of an electron, is predicted to be found at the ends of a topological superconductor nanowire. Interestingly, two Majorana fermions can combine with each other to make up one electron, allowing the quantum states of the electron to be stored nonlocally -- an advantage for fault-tolerant quantum computing.

In 2012, MIT theorists, led by Lee, predicted that heterostructures of gold can become a topological superconductor under strict conditions. Experiments done by the UCR-MIT team have achieved all the needed conditions for heterostructures of gold.

"Achieving such heterostructure is highly demanding because several material physics challenges needed to be addressed first," said Wei, a UCR alum who returned to campus in 2016 from MIT.

Wei explained that the research paper shows superconductivity, magnetism, and electrons' spin-orbit coupling can co-exist in gold -- a difficult challenge to meet -- and be manually mixed with other materials through heterostructures.

"Superconductivity and magnetism ordinarily do not coexist in the same material," he said.

Gold is not a superconductor, he added, and neither are the electron states on its surface.

"Our paper shows for the first time that superconductivity can be brought to the surface states of gold, requiring new physics," he said. "We show that it is possible to make the surface state of gold a superconductor, which has never been shown before."

The research paper also shows the electron density of superconductivity in the surface states of gold can be tuned.

"This is important for future manipulation of Majorana fermions, required for better quantum computing," Wei said. "Also, the surface state of gold is a two-dimensional system that is naturally scalable, meaning it allows the building of Majorana fermion circuits."

Besides Wei, Moodera, and Lee, the research team also includes Sujit Manna and Marius Eich of MIT.
The research was funded by the John Templeton Foundation, Office of Naval Research, National Science Foundation, and Department of Energy.

The University of California, Riverside is a doctoral research university, a living laboratory for groundbreaking exploration of issues critical to Inland Southern California, the state and communities around the world. Reflecting California's diverse culture, UCR's enrollment is more than 24,000 students. The campus opened a medical school in 2013 and has reached the heart of the Coachella Valley by way of the UCR Palm Desert Center. The campus has an annual statewide economic impact of almost $2 billion. To learn more, email

University of California - Riverside

Related Superconductivity Articles:

How a magnet could help boost understanding of superconductivity
Physicists have unraveled a mystery behind the strange behavior of electrons in a ferromagnet, a finding that could eventually help develop high temperature superconductivity.
New study explains why superconductivity takes place in graphene
Theoretical physicists take important step in development of high temperature superconductors.
Better studying superconductivity in single-layer graphene
A new study published in EPJ B demonstrates that an existing technique is better suited for probing superconductivity in pure, single-layer graphene than previously thought.
Stressing metallic material controls superconductivity
No strain, no gain -- that's the credo for Cornell researchers who have helped find a way to control superconductivity in a metallic material by stressing and deforming it.
First report of superconductivity in a nickel oxide material
Scientists at SLAC and Stanford have made the first nickel oxide material that shows clear signs of superconductivity - the ability to transmit electrical current with no loss.
A hallmark of superconductivity, beyond superconductivity itself
Physicists have found 'electron pairing,' a hallmark feature of superconductivity, at temperatures and energies well above the critical threshold where superconductivity occurs.
Manipulating superconductivity using a 'mechanic' and an 'electrician'
Strongly correlated materials can change their resistivity from infinity to zero with minute changes in conditions.
Triplet superconductivity demonstrated under high pressure
Researchers in France and Japan have demonstrated a theoretical type of unconventional superconductivity in a uranium-based material, according to a study published in the journal Physical Review Letters.
The mechanism of high-temperature superconductivity is found
Russian physicist Viktor Lakhno from Keldysh Institute of Applied Mathematics, RAS considers symmetrical bipolarons as a basis of high-temperature superconductivity.
Superconductivity is heating up
Theory suggests that metallic hydrogen should be a superconductor at room temperature; however, this material has yet to be produced in the lab.
More Superconductivity News and Superconductivity Current Events

Trending Science News

Current Coronavirus (COVID-19) News

Top Science Podcasts

We have hand picked the top science podcasts of 2020.
Now Playing: TED Radio Hour

Teaching For Better Humans 2.0
More than test scores or good grades–what do kids need for the future? This hour, TED speakers explore how to help children grow into better humans, both during and after this time of crisis. Guests include educators Richard Culatta and Liz Kleinrock, psychologist Thomas Curran, and writer Jacqueline Woodson.
Now Playing: Science for the People

#556 The Power of Friendship
It's 2020 and times are tough. Maybe some of us are learning about social distancing the hard way. Maybe we just are all a little anxious. No matter what, we could probably use a friend. But what is a friend, exactly? And why do we need them so much? This week host Bethany Brookshire speaks with Lydia Denworth, author of the new book "Friendship: The Evolution, Biology, and Extraordinary Power of Life's Fundamental Bond". This episode is hosted by Bethany Brookshire, science writer from Science News.
Now Playing: Radiolab

One of the most consistent questions we get at the show is from parents who want to know which episodes are kid-friendly and which aren't. So today, we're releasing a separate feed, Radiolab for Kids. To kick it off, we're rerunning an all-time favorite episode: Space. In the 60's, space exploration was an American obsession. This hour, we chart the path from romance to increasing cynicism. We begin with Ann Druyan, widow of Carl Sagan, with a story about the Voyager expedition, true love, and a golden record that travels through space. And astrophysicist Neil de Grasse Tyson explains the Coepernican Principle, and just how insignificant we are. Support Radiolab today at