'Spear and shield' inspire high toughness microstructure

June 28, 2020

A team led by Prof. NI Yong and Prof. HE Linghui from University of Science and Technology of China (USTC) of the Chinese Academy of Sciences (CAS) designed a discontinuous fibrous Bouligand (DFB) architecture, a combination of Bouligand and nacreous staggered structures. Systematic bending experiments for 3D-printed single-edge notched specimens with such architecture indicated that total energy dissipations are insensitive to initial crack orientations and show optimized values at critical pitch angles. The study was published in PNAS on June 22.

The survival war between the "spear" predators and "shield" preys in the biological world has inspired people that changing the microstructure of materials is an important way for structural materials to obtain extraordinary mechanical properties. The "spear" of mantis shrimps with Bouligand-type microstructures and the "shield" of abalone with nacreous staggered architectures are in research interest.

Inspired by the structural arrangements in the exoskeleton of aggressive crustaceans, where the chitin-protein nanofibrils with finite characteristic length are arranged in an overlapped array to form lamellae and the chitin-protein fibrils lamellae are arranged in the twisted plywood pattern, although not only the structure but also the mechanical properties of the materials, size, and geometry play important roles in the competition between mantis shrimp and abalone shells in nature, researchers hypothesized that the structure that exhibits the combination of the toughening mechanisms of crack twisting and crack bridging endows the mantis shrimps with remarkable fracture resistance as well as crack orientation insensitivity.

To prove the hypothesis, they designed a DFB architecture with the combination of Bouligand and nacreous staggered structures by 3D printing to examine how the fracture resistance depends on the controlled architectural parameters. Furthermore, they developed a fracture mechanics model to elucidate the mechanism of crack orientation insensitivity and maximum energy dissipations in DFB architecture.

The results showed that the sophisticated hybrid fracture mode due to the competition of energy dissipations between crack twisting and crack bridging arising in DFB architecture is identified as the origin of maximum fracture energy at a critical pitch angle.

This finding sheds light on how nature evolves materials to exceptional fracture toughness and crack orientation insensitivity. The provided design strategies with parameters selection principle enable the fabrication of formidable fracture-resistant fibrous composite systems that adapt to loads in various orientations.

This study not only reveals the origin of a microstructure for excellent fracture toughness of biomaterials, but also provides new biomimetic structural design ideas and performance optimization parameter selection principles for the preparation of high-performance advanced composite materials.

University of Science and Technology of China

Related Mechanical Properties Articles from Brightsurf:

Best practices for mechanical ventilation in patients with ARDS, COVID-19
A team from pulmonary and critical care medicine at Michigan Medicine outlines 20 evidence-based practices shown to reduce time spent on a ventilator and death in patients with acute respiratory failure and acute respiratory distress -- conditions that have many overlaps with severe COVID-19.

How cells use mechanical tension sensors to interact with their environment
In a painstaking experiment, scientists suspended a single protein filament between two microscopic beads.

Mechanical forces of biofilms could play role in infections
Studying bacterial biofilms, EPFL scientists have discovered that mechanical forces within them are sufficient to deform the soft material they grow on, e.g. biological tissues, suggesting a ''mechanical'' mode of bacterial infection.

How mechanical forces nudge tumors toward malignancy
Researchers studying two forms of skin cancer identified a long-overlooked factor determining why some tumors are more likely to metastasize than others: the physical properties of the tissue in which the cancer originates.

Building mechanical memory boards using origami
Origami can be used to create mechanical, binary switches, and in Applied Physics Letters, researchers report the fabrication of such a paper device, using the Kresling pattern, that can act as a mechanical switch.

Molecular additives enhance mechanical properties of organic solar cell material
Ganesh Balasubramanian, P.C. Rossin assistant professor of Mechanical Engineering & Mechanics at Lehigh University, and his graduate student Joydeep Munshi demonstrated that adding small molecules to a semiconducting polymer blend enhances the performance and stability of material used in organic solar cells.

Not just light: The sensitivity of photoreceptors to mechanical stimuli is unveiled
''We thought we knew almost everything about photoreceptors, but we have proved that is not the case''.

A mechanical way to stimulate neurons
Magnetic nanodiscs can be activated by an external magnetic field, providing a research tool for studying neural responses.

Cell removal as the result of a mechanical instability
Researchers at Kanazawa University report in the Biophysical Journal that the process of cell removal from an epithelial layer follows from an inherent mechanical instability.

Tissues protect their DNA under mechanical stress
Nuclei and genetic material deform.

Read More: Mechanical Properties News and Mechanical Properties Current Events
Brightsurf.com is a participant in the Amazon Services LLC Associates Program, an affiliate advertising program designed to provide a means for sites to earn advertising fees by advertising and linking to Amazon.com.