Nav: Home

Researchers employ antennas for angstrom displacement sensing

June 28, 2020

Micro - nano Optics and Technology Research Group led by Prof. LU Yonghua and Prof. WANG Pei from University of Science and Technology of China (USTC) of the Chinese Academy of Sciences (CAS) realized nanometric displacement measurement through the interaction between the illumination optical field and the optical antennas. This study was published on Physical Review Letters.

Optical metrology is of particular significance for it allows measurements of distance or displacement in a noncontact high-precision way. However, despite of the wide application in longitudinal displacement measurement of interferometric method, such as laser radar, laser ranging and small vibration measurement, lateral displacement perpendicular to the direction of the beam is hard to be detected through conventional methods.

The researchers presented a novel technique based on directional excitation of surface plasmon polaritons (SPPs).

They first excited asymmetric SPPs with a pair of optical slot antennas under the illumination of the focused Hermite-Gaussion (HG) (1,0) mode light. Then, by detecting the SPPs leakage at the back-focal plane of an oil-immersed objective, they sensitively measured the transverse displacement.

Unlike the previous strategy to retrieve the free scattering signals, which remains challenging even when employing a weak measurement technique, the SPPs leakage pattern is spatially separated from the forward scattering of the slot antennas, and thus could be utilized to monitor displacements in the back-focal plane.

The resolution of their system reaches subwavelength level (~0.3 nm). However, the extreme resolution could be down to angstrom level. It is potentially applicable in superresolution microscopy, semiconductor lithography, and calibration of nanodevices.
-end-


University of Science and Technology of China

Related Technology Articles:

Robot technology for everyone or only for the average person?
Robot technology is being used more and more in health rehabilitation and in working life.
Novel biomarker technology for cancer diagnostics
A new way of identifying cancer biomarkers has been developed by researchers at Lund University in Sweden.
Technology innovation for neurology
TU Graz researcher Francesco Greco has developed ultra-light tattoo electrodes that are hardly noticeable on the skin and make long-term measurements of brain activity cheaper and easier.
April's SLAS Technology is now available
April's Edition of SLAS Technology Features Cover Article, 'CURATE.AI: Optimizing Personalized Medicine with Artificial Intelligence'.
Technology in higher education: learning with it instead of from it
Technology has shifted the way that professors teach students in higher education.
Post-lithium technology
Next-generation batteries will probably see the replacement of lithium ions by more abundant and environmentally benign alkali metal or multivalent ions.
Rethinking the role of technology in the classroom
Introducing tablets and laptops to the classroom has certain educational virtues, according to Annahita Ball, an assistant professor in the University at Buffalo School of Social Work, but her research suggests that tech has its limitations as well.
The science and technology of FAST
The Five hundred-meter Aperture Spherical radio Telescope (FAST), located in a radio quiet zone, with the targets (e.g., radio pulsars and neutron stars, galactic and extragalactic 21-cm HI emission).
AI technology could help protect water supplies
Progress on new artificial intelligence (AI) technology could make monitoring at water treatment plants cheaper and easier and help safeguard public health.
Transformative technology
UC Davis neuroscientists have developed fluorescence sensors that are opening a new era for the optical recording of dopamine activity in the living brain.
More Technology News and Technology Current Events

Trending Science News

Current Coronavirus (COVID-19) News

Top Science Podcasts

We have hand picked the top science podcasts of 2020.
Now Playing: TED Radio Hour

Debbie Millman: Designing Our Lives
From prehistoric cave art to today's social media feeds, to design is to be human. This hour, designer Debbie Millman guides us through a world made and remade–and helps us design our own paths.
Now Playing: Science for the People

#574 State of the Heart
This week we focus on heart disease, heart failure, what blood pressure is and why it's bad when it's high. Host Rachelle Saunders talks with physician, clinical researcher, and writer Haider Warraich about his book "State of the Heart: Exploring the History, Science, and Future of Cardiac Disease" and the ails of our hearts.
Now Playing: Radiolab

Insomnia Line
Coronasomnia is a not-so-surprising side-effect of the global pandemic. More and more of us are having trouble falling asleep. We wanted to find a way to get inside that nighttime world, to see why people are awake and what they are thinking about. So what'd Radiolab decide to do?  Open up the phone lines and talk to you. We created an insomnia hotline and on this week's experimental episode, we stayed up all night, taking hundreds of calls, spilling secrets, and at long last, watching the sunrise peek through.   This episode was produced by Lulu Miller with Rachael Cusick, Tracie Hunte, Tobin Low, Sarah Qari, Molly Webster, Pat Walters, Shima Oliaee, and Jonny Moens. Want more Radiolab in your life? Sign up for our newsletter! We share our latest favorites: articles, tv shows, funny Youtube videos, chocolate chip cookie recipes, and more. Support Radiolab by becoming a member today at Radiolab.org/donate.