Stitching together a receptor reveals plant hormone action

June 29, 2000

June 30, 2000
-- Researchers have created a chimeric receptor in rice cells that allows an Arabidopsis hormone to switch on disease-resistance machinery.

The researchers created the chimeric receptor by joining one segment of a steroid hormone receptor from the plant Arabidopsis with another receptor segment from rice. The experiments, which are reported in the June 30, 2000, issue of Science, show that the plant steroid hormone, brassinolide, is perceived by the extracellular portion of the receptor. More broadly, the scientists' technique for stitching together receptor parts offers a highly promising approach to determining the function of a large array of plant signaling hormones and receptors.

The technique might also offer a way to manipulate the signaling machinery of plant cells to improve plant development and boost disease resistance, said research leader Howard Hughes Medical Institute investigator Joanne Chory. Chory and colleagues at The Salk Institute and the University of California, Davis performed the experiments described in the Science article.

Arabidopsis, a small flowering plant that is a member of the mustard family that also includes cabbage and radish, is a reference organism widely used by plant scientists. Although both the Arabidopsis and rice genomes have been fully sequenced, Chory says that very little is known about many critical plant proteins, such as the receptor-like kinases and other signaling enzymes studied in her laboratory.

"There are probably upwards of 300 receptor kinases in the plant genome, and in general we're clueless about their function," said Chory. Also missing is fundamental information about the hormones that trigger these receptor kinases. Plant biologists have been hampered in their efforts to learn about plant signaling because they have had difficulty in developing techniques to obtain measurable biological responses when experimentally manipulating plant-signaling molecules.

Chory and her colleagues chose the rice disease-resistance receptor-like kinase, XA21, because it normally triggers a dramatic reaction in the rice plant when the plant is infected by a pathogenic bacterium called Xoo (Xanthomonas oryzae pv. oryzae). When infected by Xoo, the rice plant activates defense genes, kills off infected cells and produces a burst of bacteria-killing hydrogen peroxide.

In their work, Chory and her colleagues were particularly interested in finding out whether the steroid plant hormone brassinolide was the trigger -- or ligand -- for the Arabidopsis receptor kinase, called BRI1. BRI1 is a member of the largest group of receptor kinases, called leucine-rich repeat receptor kinases.

Brassinolide is a potent growth-promoting hormone that is believed to be a key element in the plant's response to light. Such responses, which include adjusting plant growth to reach light or strengthening stems to support leaves, are central to plant survival.

To investigate brassinolide's role in BRI1 triggering, the researchers stitched the segment of the BRI1 receptor that normally sticks outside the plant cell, to the internal segment of the XA21 receptor that signals the rice cell to mount a response to infection. When they inserted the chimeric receptor into rice cells and then treated the rice cells with brassinolide, the cells reacted as if they were being infected by Xoo.

"While achieving such a measurable signaling response in cell culture is quite standard for our colleagues who work with animal cells, it is big news in the plant research community," said Chory.

According to Chory, the achievement also offers lessons for understanding the basic nature of the leucine-rich repeat receptor kinases.

"It's quite interesting to see that these receptor kinases are probably modular like the animal receptor kinases," she said. "No one even knew that you could take an extracellular domain of one and stick it onto another kinase and see a response. We're hoping that this finding will stimulate a whole cottage industry in which researchers begin to look for the ligands for other such kinases."

Chory's colleagues at UC, Davis, are now studying whether rice plants genetically altered to have such a hormone-sensitive receptor could be made more resistant to diseases. In the event of an attack by a pathogen, for example, researchers could induce the disease-fighting machinery by spraying the plant with a steroid.

Howard Hughes Medical Institute

Related Arabidopsis Articles from Brightsurf:

First PhytoFrontiers™ paper discusses arabidopsis response to caterpillars
In their PhytoFrontiers article, Jacquie and colleagues, including first author Zhihong Zhang, who just completed her MSc studies and is interested in the regulation of plant responses to caterpillar herbivory, compare plant responses to two noctuid caterpillar species that are both considered to be ''generalist'' caterpillars.

Success in promoting plant growth for biodiesel
Scientists of Waseda University in Japan succeeded in promoting plant growth and increasing seed yield by heterologous expression of protein from Arabidopsis (artificially modified high-speed motor protein) in Camelina sativa, which is expected as a useful plant for biodiesel.

Applying CRISPR beyond Arabidopsis thaliana
In the plant sciences, CRISPR--the bacterial gene editing toolbox that enables more precise and efficient editing of genomic sequences than previously possible--has initially been applied with genetic model organisms like Arabidopsis thaliana.

A molecular map for the plant sciences
Plants are essential for life on earth. They provide food for essentially all organisms, oxygen for breathing, and they regulate the climate of the planet.

Putting a finger on plant stress response
Researchers from the University of Tsukuba have found that a PHD zinc finger-like domain in SUMO E3 ligase SIZ1 is essential for protein function in Arabidopsis.

Better anchor roots help crops grow in poor soils
A newly discovered plant metabolite that promotes anchor root growth may prove valuable in helping crops grow in nutrient-deficient soils.

Plant peptide helps roots to branch out in the right places
How do plants space out their roots? A Japanese research team has identified a peptide and its receptor that help lateral roots to grow with the right spacing.

Scientists identify how plants sense temperature
A UC Riverside researcher is leading a team exploring how plants respond to temperature.

Scientists consider climate change-resistant crops
Meng Chen and his team identified the genetic mechanism used by all plants as they respond to daylight conditions as well as the ability to sense temperature.

Network biology reveals pathogen targets in the model plant Arabidopsis thaliana
Using systems biology, researchers successfully identified previously unknown protein targets of plant pathogens in the flowering plant Arabidopsis thaliana, employing some of the same methods used to analyze social networks or biological networks.

Read More: Arabidopsis News and Arabidopsis Current Events is a participant in the Amazon Services LLC Associates Program, an affiliate advertising program designed to provide a means for sites to earn advertising fees by advertising and linking to