First protein 'biochips' may deliver improved detection, diagnosis

June 29, 2000

WEST LAFAYETTE, Ind., June 30, 2000 -- Scientists at Purdue University have created the first protein "biochips," mating silicon computer chips with biological proteins.

The research coordinator says chips containing thousands of proteins could be organized into a device about the size of a handheld computer that could quickly and cheaply detect specific microbes, disease cells and harmful or therapeutic chemicals.

Michael Ladisch, professor of agricultural and biological engineering and biomedical engineering at Purdue, says that if the first real-world tests of the biochips are successful, the protein-encrusted silicon chips could appear in dozens of applications in a few years: Physicians could use devices containing biochips to quickly diagnose common diseases or to test the efficacy of chemotherapy. Soldiers might rely on sensors on the battlefield to sound the alarm in the event of a biological or chemical attack. Farmers could place sensors in their fields to alert them to crop diseases. Medical scientists could use the biochips to investigate whether certain plants popular as folk remedies actually contain biochemicals that have beneficial biological activity, and from the findings could develop new pharmaceutical products.

Although biochips containing DNA already are used to automate the sequencing of genes, including the human genome, many scientists have been interested in mating proteins with computer chips because proteins are very specific about which other proteins or biochemicals they will interact with.

Scientists often compare the binding of proteins to a key matching with a lock. By attaching these biological "keys" to computer chips, scientists believe they will be able to detect specific microbes, disease cells and harmful or therapeutic chemicals quickly and cheaply.

Take, for example, a protein that binds to the cell wall of a particular bacterium. That protein could be attached to the biochip. If the bacterium were present in a sample passed over the chip, it would bind to the protein, causing a detectable change in the electrical signal passing through the chip. This change in the electrical signal would be registered by the device, confirming the presence of the bacterium in the sample. Other bacteria or molecules in the sample would not bind to the chip.

The base computer chips were first fabricated by Rashid Bashir, assistant professor of electrical and computer engineering, working with graduate student Rafael Gomez, in Purdue's microelectronics fabrication facilities. Then, working with Ladisch and his graduate students, the group successfully attached the protein avidin to the chip. Avidin binds to a vitamin called biotin, and fluorescently labeled biotin molecules did attach to the avidin embedded on the biochip.

A key element of this research was verifying that the chips actually held the proteins, Ladisch says. J. Paul Robinson, professor of biomedical engineering and immunopharmacology, used advanced microscopic techniques to detect interactions at the surface of these chips and verify the attachment of the proteins.

Bashir and his graduate students attached the two proteins to the chip by first applying an overlay onto the chips using a process known as photolithography, which is similar to lithography printing. This helped to define the channels and metal surface regions on the chip. Then the proteins were attached by using the electrical charges naturally occurring within the proteins.

A patent application for the new Purdue biochip is pending.

A paper on the biochip, "Micro-Scale Detection of Biological Species in Micro-Fluidic Chips," was presented at the Nanoscience and Nanotechnology: Shaping Biomedical Research conference at the National Institutes of Health in Bethesda, Md., on June 25.

The first non-laboratory application of the new biochips will be to develop sensors to detect the deadly pathogen Listeria monocytogenes in foods.

According to 1999 statistics from the Centers for Disease Control and Prevention, there are an estimated 2,500 cases of Listeria monocytogenes infections annually. Unlike other foodborne pathogens, a high number -- one out of five -- of the cases of Listeria are fatal.

Better detection of this fatal food pathogen is a high priority for the food industry, according to Arun Bhunia, associate professor of food science at Purdue. "The problem is, however, that at the present time we can only detect the pathogen if we have a large sample. To get a large number, you have to let the bacterium grow in a laboratory. You typically don't see levels that high in a food system," he says. "It can take as much as five to seven days to grow, test and confirm the presence of a specific pathogen."

The biochip could speed this process dramatically. It would contain antibodies to Listeria monocytogenes obtained from rabbits or mice. Antibodies are natural defense proteins that organisms use to recognize and disable harmful proteins.

Because only Listeria monocytogenes could interact with the antibodies on the chip, a definite determination of the absence or presence of the bacterium could be made within minutes.

The work to develop a biochip sensor for the food industry is being financed by the Purdue Food Safety Engineering Project with funds from the U. S. Department of Agriculture.

"This is a good first use of this technology," Ladisch says. "To detect Listeria monocytogenes, speed is needed, and the combination of biotechnology with computer chips is a possible answer."

The biochips would require approval of the Food and Drug Administration before they could be used in food production.

Researchers from several schools and disciplines at Purdue played key roles in the development of the biochip.

"Microelectronic technology and life sciences have historically been separate areas of research," Bashir says. "But applying micro- or even nano-electronic technologies and devices, such as these biochips, to life science problems will result in solutions that are low cost compared to current testing methods, and will significantly reduce the time needed for the detection of organisms and specific biological materials."

Expertise on processing samples and interpreting their interactions is being contributed by Rakesh Singh, professor of food science, and Mike McElfresch, associate professor of physics and materials engineering.

Ladisch and Dr. Stephen Badylak, a senior research scientist in Purdue's Department of Biomedical Engineering, originally proposed the concept as a way to probe natural materials for therapeutic molecules.

"The real bottleneck in biological research is the lack of a way to quickly interrogate the chemistry of various organisms to find out if they contain any beneficial or harmful compounds," Ladisch says.

Scientists have long known that each species of plant or animal produces unique chemical compounds, and that some of these compounds can, like penicillin, become miracle drugs.

"There are estimates that there are about a million species of organisms on earth, and through human history tens of thousands of these have been used for medicinal purposes," Ladisch says. "Up to now, we've been uncovering the actual proteins or molecules at the rate of just a few a year. This research has the potential to increase that number several fold.

"What we would have would be a high-tech litmus paper. It would tell us the presence of molecules with specific properties and the concentrations. There are a lot of secrets still being held by Mother Nature. Maybe this will allow us to probe for some of the more obvious ones."
-end-
Purdue University
News Service
1132 Engineering Administration Building
West Lafayette, IN 47907-1132
Voice: 765-494-2096
FAX: 765-494-0401

STORY AND PHOTO CAN BE FOUND AT:
http://news.uns.purdue.edu/html4ever/0007.Ladisch.biochips.html

swt/Ladisch.biochips

Writer: Steve Tally

Sources: Michael Ladisch, 765-494-7022, ladisch@ecn.purdue.edu
Rashid Bashir, 765-496-6229, bashir@ecn.purdue.edu
Arun Bhunia, 765-404-5443, bhuniaa@foodsci.purdue.edu

Other sources: J. Paul Robinson, 765-494-6449, jpr@flowcyt.cyto.purdue.edu
Victor Lechtenberg, 765-494-8391

Related Web sites:
Michael Ladisch's professional Web page:
http://fairway.ecn.purdue.edu/IIES/Faculty_and_Staff/MLadisch.html
Rashid Bashir's professional Web page:
http://dynamo.ecn.purdue.edu/~bashir/
Arun Bhunia's professional Web page:
http://www.foodsci.purdue.edu/personnel/showperson.cfm?id=2
J. Paul Robinson's professional Web page:
http://BME.www.ecn.purdue.edu/BME/Faculty_Staff/robinson.whtml

PHOTO CAPTION:

Scientists at Purdue University hold a graphic representation of a computer chip embedded with proteins. The scientists say that such biochips will allow for rapid detection of disease-causing microbes, disease cells, and harmful and beneficial biochemicals. Research team members, from left to right, are laboratory technician Jennifer Sturgis; professors J. Paul Robinson, Rashid Bashir, Michael Ladisch and Arun Bhunia; and graduate student Rafael Gomez, who is holding one of the biochips. (Purdue Department of Agricultural Communication Photo by Tom Campbell)

NOTE TO JOURNALISTS: A publication-quality photograph of the research team in a chip fabrication clean room is available at http://news.uns.purdue.edu or at ftp://ftp.purdue.edu/pub/uns/. It is called Ladisch.biochips.

Purdue University

Related Bacterium Articles from Brightsurf:

Root bacterium to fight Alzheimer's
A bacterium found among the soil close to roots of ginseng plants could provide a new approach for the treatment of Alzheimer's.

Tuberculosis bacterium uses sluice to import vitamins
A transport protein that is used by the human pathogen Mycobacterium tuberculosis to import vitamin B12 turns out to be very different from other transport proteins.

Bacterium makes complex loops
A scientific team from the Biosciences and Biotechnology Institute of Aix-Marseille in Saint-Paul lez Durance, in collaboration with researchers from the Max Planck Institute of Colloids and Interfaces in Potsdam and the University of Göttingen, determined the trajectory and swimming speed of the magnetotactic bacterium Magnetococcus marinus, known to move rapidly.

Researchers show how opportunistic bacterium defeats competitors
The researchers discovered that Stenotrophomonas maltophilia uses a secretion system that produces a cocktail of toxins and injects them into other microorganisms with which it competes for space and food.

Genetic typing of a bacterium with biotechnological potential
Researchers at Kanazawa University describe in Scientific Reports the genetic typing of the bacterium Pseudomonas putida.

How the strep bacterium hides from the immune system
A bacterial pathogen that causes strep throat and other illnesses cloaks itself in fragments of red blood cells to evade detection by the host immune system, according to a study publishing December 3 in the journal Cell Reports.

The cholera bacterium can steal up to 150 genes in one go
EPFL scientists have discovered that predatory bacteria like the cholera pathogen can steal up to 150 genes in one go from their neighbors.

Exploiting green tides thanks to a marine bacterium
Ulvan is the principal component of Ulva or 'sea lettuce' which causes algal blooms (green tides).

The cholera bacterium's 3-in-1 toolkit for life in the ocean
The cholera bacterium uses a grappling hook-like appendage to take up DNA, bind to nutritious surfaces and recognize 'family' members, EPFL scientists have found.

Excellent catering: How a bacterium feeds an entire flatworm
In the sandy bottom of warm coastal waters lives Paracatenula -- a small worm that has neither mouth, nor gut.

Read More: Bacterium News and Bacterium Current Events
Brightsurf.com is a participant in the Amazon Services LLC Associates Program, an affiliate advertising program designed to provide a means for sites to earn advertising fees by advertising and linking to Amazon.com.