Nav: Home

New process makes diesel fuel and industrial chemicals from simple sugar

June 29, 2006

MADISON - The soaring prices of oil and natural gas have sparked a race to make transportation fuels from plant matter instead of petroleum. Both biodiesel and gasoline containing ethanol are starting to make an impact on the market. But the oil price hike has also fueled a race to find new sources for chemical intermediates - compounds that are the raw material for many modern plastics, drugs and fuels. Behind the scenes, American industry uses millions of tons of chemical intermediates, which are largely sourced from petroleum or natural gas.

James Dumesic, a University of Wisconsin-Madison chemical and biological engineering professor, reports in the June 30 issue of the journal Science on a better way to make a chemical intermediate called HMF (hydroxymethylfurfural) from fructose - fruit sugar. HMF can be converted into plastics, diesel-fuel additive, or even diesel fuel itself, but is seldom used because it is costly to make.

The new process goes beyond making fuel from plants to make industrial chemicals from plants. "Trying to understand how to use catalytic processes to make chemicals and fuel from biomass is a growing area," says Dumesic, who directed the HMF research. "Instead of using the ancient solar energy locked up in fossil fuels, we are trying to take advantage of the carbon dioxide and modern solar energy that crop plants pick up."

The new, patent-pending method for making HMF is a balancing act of chemistry, pressure, temperature and reactor design. After a catalyst converts fructose into HMF, the HMF moves to a solvent that carries it to a separate location, where the HMF is extracted. Although other researchers had previously converted fructose into HMF, Dumesic's research group made a series of improvements that raised the HMF output, and also made the HMF easier to extract.

Once made, HMF is fairly easy to convert into plastics or diesel fuel. Although the biodiesel that has made headlines lately is made from a fat (even used cooking oil), not a sugar, both processes have similar environmental and economic benefits, Dumesic says. Instead of buying petroleum from abroad, the raw material would come from domestic agriculture. Expanding the source of raw material should also depress the price of petroleum.

Using biomass-waste products of agriculture and forestry-can also cut global warming caused by carbon dioxide emissions from fossil fuels, says graduate student Yuriy Roman-Leshkov, first author on the Science paper. "The nice thing about using biomass as a replacement for all these petroleum products is that it is greenhouse-neutral," he says. While burning and otherwise using fossil fuels moves an enormous amount of carbon from the Earth into the atmosphere, the carbon released when a biofuel burns is eventually taken up by growing plants. "This process is really important," Roman-Leshkov says, "because it does not introduce additional carbon dioxide into the atmosphere."

Juben N. Chheda, a second graduate student working on the HMF project, sees the work as part of an explosion of interest in finding alternative sources for petroleum-based chemicals. "We need to develop new process technologies, and HMF is a building block that can replace products like PET, a plastic used for soda bottles," he notes. "This is a first step for a range of chemical products that can be obtained from biomass resources, replacing those that come from petroleum sources."

Dumesic is also exploring methods to convert other sugars and even more complex carbohydrates into HMF and other chemical intermediates. "Solar energy and biology created the stored hydrocarbons in the fossil fuels we have used for so long. Our interest in biomass is driven by the belief that if we learn to use solar energy and biology in a different way, we can address problems related to price, supply, and the environmental impact of industrial activity."

-end-

Dumesic's research on environmentally friendly sources of common chemicals is supported by the U.S. Department of Agriculture and the National Science Foundation. - Jim Beal, (608) 263-0611, jbeal@engr.wisc.edu

EDITOR'S NOTE: A graphic of the biofuel conversion process is available at

https://mywebspace.wisc.edu/jcbeal/web/Dumesic%20HMF.jpg

University of Wisconsin-Madison
Ecology insights improve plant biomass degradation by microorganisms
Microbes are widely used to break down plant biomass into sugars, which can be used as sustainable building blocks for novel biocompounds.
Termite gut holds a secret to breaking down plant biomass
In the Microbial Sciences Building at the University of Wisconsin-Madison, the incredibly efficient eating habits of a fungus-cultivating termite are surprising even to those well acquainted with the insect's natural gift for turning wood to dust.
Scientists harness solar power to produce clean hydrogen from biomass
A team of scientists at the University of Cambridge has developed a way of using solar power to generate a fuel that is both sustainable and relatively cheap to produce.
How much biomass grows in the savannah?
The ability of the savannahs to store the greenhouse gas carbon dioxide is ultimately determined by the amount of aboveground woody biomass.
Economics of forest biomass raise hurdles for rural development
The use of residual forest biomass for rural development faces significant economic hurdles that make it unlikely to be a source of jobs in the near future, according to an analysis by economists.
Biomass heating could get a 'green' boost with the help of fungi
In colder weather, people have long been warming up around campfires and woodstoves.
Unraveling the science behind biomass breakdown
Using the Titan supercomputer, an ORNL team created models of up to 330,000 atoms that led to the discovery of a THF-water cosolvent phase separation on the faces of crystalline cellulose fiber.
US holds potential to produce billion tons of biomass, support bioeconomy
The 2016 Billion-Ton Report, jointly released by the US Department of Energy and Oak Ridge National Laboratory, concludes that the United States has the potential to sustainably produce at least 1 billion dry tons of nonfood biomass resources annually by 2040.
Improving poor soil with burned up biomass
Researchers at the RIKEN Center for Sustainable Resource Science in Japan have shown that torrefied biomass can improve the quality of poor soil found in arid regions.
Women cooking with biomass fuels more likely to have cataracts
Women in India who cook using fuels such as wood, crop residues and dried dung instead of cleaner fuels are more likely to have visually impairing nuclear cataracts, according to a new study by the London School of Hygiene & Tropical Medicine.

Best Science Podcasts 2017

We have hand picked the best science podcasts for 2017. Sit back and enjoy new science podcasts updated daily from your favorite science news services and scientists.

Now Playing: Radiolab

Truth Trolls
Today, a third story of folks relentlessly searching for the truth. But this time, the truth seekers are an unlikely bunch... internet trolls.


Now Playing: TED Radio Hour

Rethinking School
For most of modern history, humans have placed smaller humans in institutions called schools. But what parts of this model still work? And what must change? This hour, TED speakers rethink education.TED speakers include teacher Tyler DeWitt, social entrepreneur Sal Khan, international education expert Andreas Schleicher, and educator Linda Cliatt-Wayman.