GUMC study may help explain 'awakenings' that occur with popular sleep-aid Ambien

June 29, 2009

Washington, DC -- Some people who take the fast-acting sleep-aid zolpidem (Ambien) have been observed walking, eating, talking on the phone and even driving while not fully awake. Many often don't remember doing any of these activities the next morning. Similarly, this drug has been shown to awaken the minimally conscious into a conscious state. A new study by Georgetown University Medical Center (GUMC) researchers may help explain why these "awakenings" occur.

The study, published online in the Proceedings of the National Academy of Sciences Monday, suggests that while some powerful brain circuits are shut down with zolpidem, the powerful sedative activates other circuits when deprived of activity.

"Brain cells or neurons are highly reactive to incoming activity throughout life," explains Molly M. Huntsman, an assistant professor in the department of pharmacology at Georgetown University Medical Center and corresponding author for the study. "When brain activity is silenced, many neurons automatically react to this change. We see this in our study which suggests that inhibitory neurons responsible for stopping neural activity are themselves shut down by zolpidem. The excitatory neurons, responsible for transmitting activity, are then allowed to re-awaken and become active again, without monitoring because the inhibitory neurons are 'asleep'."

Rodents are especially dependent upon their whiskers to explore their environment; for the study, researchers trimmed the whiskers of mice (while under anesthesia). They then studied the region of the brain responsive to whisker movements to examine activity-dependent brain circuits. After removing the whiskers and depriving neural activity, the inhibitory neurons that normally don't respond to sedation by zolpidem underwent a change, becoming more sensitive. The researchers posited that these neurons are shut down and, in turn, not able to monitor other brain circuits.

"This was really unexpected. It appears the receptors on some inhibitory neurons were changed and were able to be inhibited by zolpidem, preventing them from performing their normal functions. We merely wanted to use zolpidem as a tool to examine which type of functional inhibitory receptor is expressed in certain neurons. Yet it turns out that sensory deprivation in the form of whisker trimming is enough to alter the receptor composition expressed in these cells." Huntsman says.

Researchers say that while the study suggests that zolpidem shuts down active neural pathways and perhaps then triggers others, the activation of this trigger is unknown.

"Nevertheless, the paradoxical activation of brain circuits by a powerful sedative definitely needs more attention in additional studies both human and in animal models," Huntsman concludes.
-end-
Other authors of the paper include Peijun Li of GUMC and Uwe Rudolph of McLean Hospital, a Harvard Medical School affiliate. The authors report no related financial interests.

This work was funded by a grant from the National Institutes of Health.

About Georgetown University Medical Center

Georgetown University Medical Center is an internationally recognized academic medical center with a three-part mission of research, teaching and patient care (through Georgetown's affiliation with MedStar Health). GUMC's mission is carried out with a strong emphasis on public service and a dedication to the Catholic, Jesuit principle of cura personalis -- or "care of the whole person." The Medical Center includes the School of Medicine and the School of Nursing and Health Studies, both nationally ranked, the world-renowned Lombardi Comprehensive Cancer Center and the Biomedical Graduate Research Organization (BGRO), home to 60 percent of the university's sponsored research funding.

Georgetown University Medical Center

Related Neurons Articles from Brightsurf:

Paying attention to the neurons behind our alertness
The neurons of layer 6 - the deepest layer of the cortex - were examined by researchers from the Okinawa Institute of Science and Technology Graduate University to uncover how they react to sensory stimulation in different behavioral states.

Trying to listen to the signal from neurons
Toyohashi University of Technology has developed a coaxial cable-inspired needle-electrode.

A mechanical way to stimulate neurons
Magnetic nanodiscs can be activated by an external magnetic field, providing a research tool for studying neural responses.

Extraordinary regeneration of neurons in zebrafish
Biologists from the University of Bayreuth have discovered a uniquely rapid form of regeneration in injured neurons and their function in the central nervous system of zebrafish.

Dopamine neurons mull over your options
Researchers at the University of Tsukuba have found that dopamine neurons in the brain can represent the decision-making process when making economic choices.

Neurons thrive even when malnourished
When animal, insect or human embryos grow in a malnourished environment, their developing nervous systems get first pick of any available nutrients so that new neurons can be made.

The first 3D map of the heart's neurons
An interdisciplinary research team establishes a new technological pipeline to build a 3D map of the neurons in the heart, revealing foundational insight into their role in heart attacks and other cardiac conditions.

Mapping the neurons of the rat heart in 3D
A team of researchers has developed a virtual 3D heart, digitally showcasing the heart's unique network of neurons for the first time.

How to put neurons into cages
Football-shaped microscale cages have been created using special laser technologies.

A molecule that directs neurons
A research team coordinated by the University of Trento studied a mass of brain cells, the habenula, linked to disorders like autism, schizophrenia and depression.

Read More: Neurons News and Neurons Current Events
Brightsurf.com is a participant in the Amazon Services LLC Associates Program, an affiliate advertising program designed to provide a means for sites to earn advertising fees by advertising and linking to Amazon.com.