MIT: Extending the shelf life of antibody drugs

June 29, 2009

CAMBRIDGE, Mass.--A new computer model developed at MIT can help solve a problem that has plagued drug companies trying to develop promising new treatments made of antibodies: Such drugs have a relatively short shelf life because they tend to clump together, rendering them ineffective.

Antibodies are the most rapidly growing class of human drugs, with the potential to treat cancer, arthritis and other chronic inflammatory and infectious diseases. About 200 such drugs are now in clinical trials, and a few are already on the market.

Patients can administer these drugs to themselves, but this requires high doses -- and the drugs must therefore be stored at high concentrations. However, under these conditions the drugs tend to clump, or aggregate. Even if they are stored at lower concentrations and administered by a doctor intravenously, they often have stability issues. Addressing such issues typically takes place later in the drug development process, and the cost -- both in time and money -- is often high.

Currently there is no straightforward way to address these storage issues early in the development process.

"Drugs are usually developed with the criteria of how effective they'll be, and how well they'll bind to whatever target they're supposed to bind," says Bernhardt Trout, professor of chemical engineering and leader of the MIT team. "The problem is there are all of these issues down the line that were never taken into account."

Trout and his colleagues, including Bernhard Helk of Novartis, have developed a computer model that can help designers identify which parts of an antibody are most likely to attract other molecules, allowing them to alter the antibodies to prevent such clumping. The model, which the researchers aim to incorporate in the drug discovery process, is described in a paper appearing in the online edition of the Proceedings of the National Academy of Sciences the week of June 29.

Preventing aggregation

Most of the aggregation seen in antibodies is due to interactions between exposed hydrophobic (water-fearing) regions of the proteins.

Trout's new model, known as SAP (spatial aggregation propensity), offers a dynamic, three-dimensional simulation of antibody molecules. Unlike static representations such as those provided by X-ray crystallography, the new model can reveal hydrophobic regions and also indicates how much those regions are exposed when the molecule is in solution. The other important aspect of the model is that it selects out regions responsible for aggregation, as opposed to just single sites.

Once the hydrophobic regions are known, researchers can mutate the amino acids in those regions to decrease hydrophobicity and make the molecule more stable. Using the model, the team produced mutated antibodies with greatly enhanced stability (up to 50 percent more than the original antibodies), and the mutations had no adverse affect on their function.
-end-
Lead authors of the PNAS paper are Naresh Chennamsetty and Vladimir Voynov, postdoctoral associates in MIT's Department of Chemical Engineering. Other authors are chemical engineering postdoctoral associate Veysel Kayser and Bernhard Helk of Novartis.

The research was funded by Novartis Pharma AG and computer time was provided in part by the National Center for Supercomputing Applications.

Massachusetts Institute of Technology

Related Antibodies Articles from Brightsurf:

Scientist develops new way to test for COVID-19 antibodies
New research details how a cell-free test rapidly detects COVID-19 neutralizing antibodies and could aid in vaccine testing and drug discovery efforts.

Mussels connect antibodies to treat cancer
POSTECH research team develops innovative local anticancer immunotherapy technology using mussel protein.

For an effective COVID vaccine, look beyond antibodies to T-cells
Most vaccine developers are aiming solely for a robust antibody response against the SARS-CoV-2 virus, despite evidence that antibodies are not the body's primary protective response to infection by coronaviruses, says Marc Hellerstein of UC Berkeley.

Children can have COVID-19 antibodies and virus in their system simultaneously
With many questions remaining around how children spread COVID-19, Children's National Hospital researchers set out to improve the understanding of how long it takes pediatric patients with the virus to clear it from their systems, and at what point they start to make antibodies that work against the coronavirus.

The behavior of therapeutic antibodies in immunotherapy
Since the late 1990s, immunotherapy has been the frontline treatment against lymphomas where synthetic antibodies are used to stop the proliferation of cancerous white blood cells.

Re-engineering antibodies for COVID-19
Catholic University of America researcher uses 'in silico' analysis to fast-track passive immunity

Seroprevalence of antibodies to SARS-CoV-2 in 10 US sites
This study estimates how common SARS-CoV-2 antibodies are in convenience samples from 10 geographic sites in the United States.

Neutralizing antibodies in the battle against COVID-19
An important line of defense against SARS-CoV-2 is the formation of neutralizing antibodies.

Three new studies identify neutralizing antibodies against SARS-CoV-2
A trio of papers describes several newly discovered human antibodies that target the SARS-CoV-2 virus, isolated from survivors of SARS-CoV-2 and SARS-CoV infection.

More effective human antibodies possible with chicken cells
Antibodies for potential use as medicines can be made rapidly in chicken cells grown in laboratories.

Read More: Antibodies News and Antibodies Current Events
Brightsurf.com is a participant in the Amazon Services LLC Associates Program, an affiliate advertising program designed to provide a means for sites to earn advertising fees by advertising and linking to Amazon.com.