Little-known marine decomposers attract the attention of genome sequencers

June 29, 2009

STONY BROOK, N.Y., June 29, 2009 - The Department of Energy's Joint Genome Institute (JGI) announced today that they will sequence the genomes of four species of labyrinthulomycetes. These little-known marine species were selected for sequencing as the result of a proposal submitted to the competitive JGI Community Sequencing Program by a team of microbiologists led by Dr. Jackie Collier, assistant professor at the School of Marine and Atmospheric Sciences (SoMAS) at Stony Brook University.

"Labyrinthulomycetes are a huge group of organisms that behave ecologically like fungi," said Dr. Collier. "But we know so little about them and there is more diversity among this group than among all the animals you can think of."

Labyrinthulomycetes are single-celled marine decomposers that eat non-living plant, algal, and animal matter. They are ubiquitous and abundant--particularly on dead vegetation and in salt marshes and mangrove swamps. Although most labyrinthulomycetes species are not pathogens, the organisms responsible for eelgrass wasting disease and QPX disease in hard clams are part of this group.

In some regions, labyrinthulomycetes may be as important as bacteria in degrading organic matter. In coastal systems, the abundance of bacteria is tied to levels of organic matter from marine sources, while the abundance of labyrinthulomycetes is more closely tied to levels of particulate organic matter from land sources. This suggests that labyrinthulomycetes may play an important role in the marine carbon cycle by breaking down material that is difficult to degrade. Because labyrinthulomycetes--unlike bacteria--make long chain polyunsaturated fatty acids (PUFAs), they are also thought to improve the nutritional value of poor quality organic detritus.

"The genome sequences will provide a quantum leap in our understanding of the physiological capacity of these organisms," said Dr. Collier. "The genes can tell us which enzymes a species is capable of producing, which in turn tells us what kinds of material they can potentially degrade and what role they play in a marine ecosystem's food web."

In addition, genomic information might suggest ways to exploit labyrinthulomycetes in novel biotechnological applications. Labyrinthulomycetes produce a wide array of enzymes and some species can degrade crude oil. Also, some labyrinthulomycetes are currently cultured for nutritional supplements. If PUFAs derived from labyrinthulomycetes were to replace fish oils and meal used in aquaculture and animal farming, it would likely reduce the number of fish caught for use as animal feed and have a positive impact on the health of the world's oceans.
-end-
The School of Marine and Atmospheric Sciences (SoMAS) is the State University of New York's center for marine and atmospheric research, education, and public service. The expertise of SoMAS faculty places them in the forefront in addressing and answering questions about immediate regional problems, as well as long-term problems relating to the global oceans and atmosphere.

Stony Brook University

Related Enzymes Articles from Brightsurf:

Bacilli and their enzymes show prospects for several applications
This publication is devoted to the des­cription of different microbial enzymes with prospects for practical application.

Ancient enzymes can contribute to greener chemistry
A research team at Uppsala University has resurrected several billion-year-old enzymes and reprogrammed them to catalyse completely different chemical reactions than their modern versions can manage.

Advances in the production of minor ginsenosides using microorganisms and their enzymes
Advances in the Production of Minor Ginsenosides Using Microorganisms and Their Enzymes - BIO Integration https://bio-integration.org/wp-content/uploads/2020/05/bioi20200007.pdf Announcing a new article publication for BIO Integration journal.

Cold-adapted enzymes can transform at room temperature
Enzymes from cold-loving organisms that live at low temperatures, close to the freezing point of water, display highly distinctive properties.

How enzymes build sugar trees
Researchers have used cryo-electron microscopy to elucidate for the first time the structure and function of a very small enzyme embedded in cell membranes.

Energized by enzymes -- nature's catalysts
Scientists at Pacific Northwest National Laboratory are using a custom virtual reality app to design an artificial enzyme that converts carbon dioxide to formate, a kind of fuel.

Mathematical model reveals behavior of cellular enzymes
Mathematical modeling helps researchers to understand how enzymes in the body work to ensure normal functioning.

While promoting diseases like cancer, these enzymes also cannibalize each other
In diseases like cancer, atherosclerosis, and sickle cell anemia, cathepsins promote their propagation.

Researchers finally grasp the work week of enzymes
Scientists have found a novel way of monitoring individual enzymes as they chomp through fat.

How oxygen destroys the core of important enzymes
Certain enzymes, such as hydrogen-producing hydrogenases, are unstable in the presence of oxygen.

Read More: Enzymes News and Enzymes Current Events
Brightsurf.com is a participant in the Amazon Services LLC Associates Program, an affiliate advertising program designed to provide a means for sites to earn advertising fees by advertising and linking to Amazon.com.