Early heart attack therapy with bone marrow extract improves cardiac function

June 29, 2009

A UCSF study for the treatment of heart failure after heart attack found that the extract derived from bone marrow cells is as effective as therapy using bone marrow stem cells for improving cardiac function, decreasing the formation of scar tissue and improving cardiac pumping capacity after heart attack.

Findings were published online and in the July 2009 issue of the Journal of Molecular Therapy. The cover of the journal features a microscope image of cells from the UCSF study.

The studies were done in mice using a novel stem cell delivery method developed by UCSF researchers to show that the extract from bone marrow cells is as beneficial to cardiac function as are intact, whole cells. Both the cell and cell extract therapies resulted in the presence of more blood vessels and less cardiac cell death, or apoptosis, than no therapy. The study also showed that heart function benefitted despite the finding that few of the injected cells remained in the heart at one month after therapy.

"Peer-reviewed medical literature is controversial as to whether bone marrow cells differentiate into cardiomyocytes, or cardiac muscle cells, but there is general agreement that stem cell therapy with these cells results in some level of functional improvement after a heart attack. The exact mechanism for this is not yet clear. Our results confirm that whole cells are not necessarily required in order to see the beneficial effects of bone marrow cell therapy," said Yerem Yeghiazarians, MD, study author, cardiologist and director of UCSF's Translational Cardiac Stem Cell Development Program.

UCSF researchers are investigating these new therapies to improve cardiac function after heart attack in an effort to prevent heart failure. Heart failure occurs when cardiac muscle is damaged and scar tissue replaces beating cardiomyocytes. As scar replaces healthy tissue, it causes the heart to enlarge and lose its pumping capacity. When the pumping capacity decreases, the heart fills with fluid, which moves to the lungs and can lead to organ failure and death.

"Current therapies improve symptoms but do not replace scar tissue. Our hope is to use stem cells to decrease the scar, minimize the loss of cardiac muscle and maintain or even improve the cardiac function after a heart attack," Yeghiazarians said.

Using a novel, closed-chest, ultrasound-guided injection technique developed by Yeghiazarians and his colleagues, the team administered three different groups with bone marrow cells, bone marrow cell extract, or saline (for the control group). The injections were administered at day three after heart attack - a timeframe somewhat similar to human biology on days six-to-seven after heart attack.

The team found at day 28 that both the bone marrow cell group and the extract group had significantly smaller heart damage than the control group.

Left-ventricular ejection fraction (LVEF), or the measurement of blood pumped out of the ventricles per heart beat, fell uniformly in each group after heart attack from a level of about 57.2 percent to 38.4 percent. At day 28 (and after the therapies had been administered on day three), LVEF improved in both the bone marrow cell and extract groups to approximately 40.6 and 39.1 percent as compared to approximately 33.2 percent for the control group.

"We hope our findings can help in the development of new therapies for improving heart function after the deleterious effects of a heart attack," says Yeghiazarians.

The team is continuing to evaluate bone marrow cell and extract therapies in order to identify the proteins and factors within the extract and gain insight into the possible mechanisms of cardiac functional improvement.

"The best acute therapy for a heart attack remains early recognition and revascularization of the blocked artery to minimize the damage to the heart muscle," said Yeghiazarians. "Although the prognosis depends on multiple factors, what we know for sure is that the sooner a heart attack gets diagnosed and cardiologists open the blocked artery, the better the long-term outcome. There are a number of ongoing stem cell-based clinical trials, and depending on further research and the outcome of these studies, we might have new therapies for the treatment of patients who suffer from a heart attack in the not-too-distant future."
-end-
Additional authors are Andrew J. Boyle, MD, PhD; Matthew L. Springer, PhD; William Grossman, MD; Yan Zhang, MD, PhD; Richard E. Sievers; Franca S. Angeli, MD; Juha Koskenvuo, MD, PhD; Junya Takagawa, MD, PhD; Mohan N. Viswanathan, MD; Jianqin Ye, MD, PhD; Neel K. Kapasi; Petros Minasi; Rachel Mirsky; Megha Prasad; Shereen A. Saini; Henry Shih; and Maelene L. Wong of UCSF.

The study was supported by the UCSF Cardiac Stem Cell Foundation, UCSF Research Evaluation and Allocation Committee and the Wayne and Gladys Valley Foundation.

UCSF is a leading university dedicated to promoting health worldwide through advanced biomedical research, graduate-level education in the life sciences and health professions, and excellence in patient care. For further information, visit www.ucsf.edu.

University of California - San Francisco

Related Stem Cells Articles from Brightsurf:

SUTD researchers create heart cells from stem cells using 3D printing
SUTD researchers 3D printed a micro-scaled physical device to demonstrate a new level of control in the directed differentiation of stem cells, enhancing the production of cardiomyocytes.

More selective elimination of leukemia stem cells and blood stem cells
Hematopoietic stem cells from a healthy donor can help patients suffering from acute leukemia.

Computer simulations visualize how DNA is recognized to convert cells into stem cells
Researchers of the Hubrecht Institute (KNAW - The Netherlands) and the Max Planck Institute in Münster (Germany) have revealed how an essential protein helps to activate genomic DNA during the conversion of regular adult human cells into stem cells.

First events in stem cells becoming specialized cells needed for organ development
Cell biologists at the University of Toronto shed light on the very first step stem cells go through to turn into the specialized cells that make up organs.

Surprising research result: All immature cells can develop into stem cells
New sensational study conducted at the University of Copenhagen disproves traditional knowledge of stem cell development.

The development of brain stem cells into new nerve cells and why this can lead to cancer
Stem cells are true Jacks-of-all-trades of our bodies, as they can turn into the many different cell types of all organs.

Healthy blood stem cells have as many DNA mutations as leukemic cells
Researchers from the Princess Máxima Center for Pediatric Oncology have shown that the number of mutations in healthy and leukemic blood stem cells does not differ.

New method grows brain cells from stem cells quickly and efficiently
Researchers at Lund University in Sweden have developed a faster method to generate functional brain cells, called astrocytes, from embryonic stem cells.

NUS researchers confine mature cells to turn them into stem cells
Recent research led by Professor G.V. Shivashankar of the Mechanobiology Institute at the National University of Singapore and the FIRC Institute of Molecular Oncology in Italy, has revealed that mature cells can be reprogrammed into re-deployable stem cells without direct genetic modification -- by confining them to a defined geometric space for an extended period of time.

Researchers develop a new method for turning skin cells into pluripotent stem cells
Researchers at the University of Helsinki, Finland, and Karolinska Institutet, Sweden, have for the first time succeeded in converting human skin cells into pluripotent stem cells by activating the cell's own genes.

Read More: Stem Cells News and Stem Cells Current Events
Brightsurf.com is a participant in the Amazon Services LLC Associates Program, an affiliate advertising program designed to provide a means for sites to earn advertising fees by advertising and linking to Amazon.com.