New MRI technique could mean fewer breast biopsies in high-risk women

June 29, 2009

MADISON -- A University of Wisconsin-Madison biomedical engineer and colleagues have developed a method that, applied in MRI scans of the breast, could spare some women with increased breast cancer risk the pain and stress of having to endure a biopsy of a questionable lump or lesion.

The universal technology will give radiologists greater confidence in visually classifying a lesion as malignant or benign.

The American Cancer Society recommends that women with certain breast cancer risk factors -- including inherited genetic mutations, family or personal history of breast cancer, or previous radiation therapy to the chest -- receive an annual MRI screening in addition to their yearly mammogram.

During a breast MRI, which lasts about a half hour, the technician injects a contrast agent into a vein in the patient's arm. Over time, the contrast agent flows throughout the body, including the breasts. Because they are growing quickly, cancerous lesions often have immature vasculature, and the contrast agent flows in and "leaks" out quickly. Conversely, benign lesions show more gradual in and out flow.

"The tricky ones are the ones that enhance quickly and then fall off more slowly," says Wally Block, a UW-Madison associate professor of biomedical engineering and medical physics. "Many of these lesions turn out to be difficult to classify and lead to biopsy."

Yet, it turns out that with the right kind of MRI scan, radiologists can visually identify a cancerous lesion based on characteristics about its shape. For example, breaks or interruptions in a lesion can indicate a benign fibroadenoma. Lumps with smooth edges often are benign, while those with jagged edges can signal cancer.

To generate the kind of crisp, three-dimensional images necessary for such a diagnosis, Block, UW-Madison radiology associate professor Fred Kelcz and graduate student Catherine Moran are capitalizing on their unique MRI data-acquisition method.

An MR image is made up of thousands of smaller pieces of information. The conventional data-acquisition method gathers that information slowly, and it's designed to be viewed from a single imaging plane. "What people do now is they compromise," says Block. "They don't get resolution in the other planes to make it a reasonable scan time. We found a way around that."

With the team's powerful technique, an MRI machine acquires data radially and generates a high-resolution, three-dimensional image that radiologists can turn, slice and view from many perspectives -- enabling them to study a lesion's physical characteristics more carefully. Machines equipped with the technique also acquire more data in less time.

In addition, the method also makes it possible for radiologists to view fat images and water images separately, which is particularly useful because fat composes a large portion of the breast. "Rarely is disease associated with fat," says Block. "Most of the time radiologists are concentrating on water images, but sometimes our fat images of the breast are also useful. The boundaries of a lesion often stand out very clearly when embedded in fat."

Block and his colleagues currently are gathering data on the efficacy of the technique. They have tested the method on 20 patients at the University of Wisconsin Hospital and have shared it with colleagues at the University of Toronto for additional assessment. They also are working with Michigan State University researchers to test the technique.

Collaborating with Scott Reeder, a UW-Madison assistant professor of biomedical engineering and radiology, Block and colleagues also are refining ways to image both breasts simultaneously -- a development that could slash scan time and free valuable MRI space for additional patients. "If you have a screening procedure that you want people to participate in regularly, you want to make it convenient for them," says Block.
-end-
Funding from the Walter H. Coulter Translational Research Partnership in biomedical engineering at UW-Madison supported the research, as well as grants and in-kind support from GE Healthcare. In addition to Block, Kelcz, Moran and Reeder, UW-Madison collaborators also include research scientist Alexey Samsonov and assistant researcher Ethan Brodsky.

-- Renee Meiller, meiller@engr.wisc.edu, 608-262-2481

University of Wisconsin-Madison

Related Breast Cancer Articles from Brightsurf:

Oncotarget: IGF2 expression in breast cancer tumors and in breast cancer cells
The Oncotarget authors propose that methylation of DVDMR represents a novel epigenetic biomarker that determines the levels of IGF2 protein expression in breast cancer.

Breast cancer: AI predicts which pre-malignant breast lesions will progress to advanced cancer
New research at Case Western Reserve University in Cleveland, Ohio, could help better determine which patients diagnosed with the pre-malignant breast cancer commonly as stage 0 are likely to progress to invasive breast cancer and therefore might benefit from additional therapy over and above surgery alone.

Partial breast irradiation effective treatment option for low-risk breast cancer
Partial breast irradiation produces similar long-term survival rates and risk for recurrence compared with whole breast irradiation for many women with low-risk, early stage breast cancer, according to new clinical data from a national clinical trial involving researchers from The Ohio State University Comprehensive Cancer Center - Arthur G.

Breast screening linked to 60 per cent lower risk of breast cancer death in first 10 years
Women who take part in breast screening have a significantly greater benefit from treatments than those who are not screened, according to a study of more than 50,000 women.

More clues revealed in link between normal breast changes and invasive breast cancer
A research team, led by investigators from Georgetown Lombardi Comprehensive Cancer Center, details how a natural and dramatic process -- changes in mammary glands to accommodate breastfeeding -- uses a molecular process believed to contribute to survival of pre-malignant breast cells.

Breast tissue tumor suppressor PTEN: A potential Achilles heel for breast cancer cells
A highly collaborative team of researchers at the Medical University of South Carolina and Ohio State University report in Nature Communications that they have identified a novel pathway for connective tissue PTEN in breast cancer cell response to radiotherapy.

Computers equal radiologists in assessing breast density and associated breast cancer risk
Automated breast-density evaluation was just as accurate in predicting women's risk of breast cancer, found and not found by mammography, as subjective evaluation done by radiologists, in a study led by researchers at UC San Francisco and Mayo Clinic.

Blood test can effectively rule out breast cancer, regardless of breast density
A new study published in PLOS ONE demonstrates that Videssa® Breast, a multi-protein biomarker blood test for breast cancer, is unaffected by breast density and can reliably rule out breast cancer in women with both dense and non-dense breast tissue.

Study shows influence of surgeons on likelihood of removal of healthy breast after breast cancer dia
Attending surgeons can have a strong influence on whether a patient undergoes contralateral prophylactic mastectomy after a diagnosis of breast cancer, according to a study published by JAMA Surgery.

Young breast cancer patients undergoing breast conserving surgery see improved prognosis
A new analysis indicates that breast cancer prognoses have improved over time in young women treated with breast conserving surgery.

Read More: Breast Cancer News and Breast Cancer Current Events
Brightsurf.com is a participant in the Amazon Services LLC Associates Program, an affiliate advertising program designed to provide a means for sites to earn advertising fees by advertising and linking to Amazon.com.