Radiation-guided nanoparticles zero in on metastatic cancer

June 29, 2016

Zap a tumor with radiation to trigger expression of a molecule, then attack that molecule with a drug-loaded nanoparticle. That's the approach researchers working in mice have taken in a new study that aims to make delivery of chemotherapy to metastatic tumors more effective. The researchers say that the radiation-guided nanoparticles may offer a new approach for penetrating the vascular barrier that often thwarts current nanomedicines from reaching metastatic tumors. To spread to distant organs, cancer cells in the bloodstream latch onto adhesion molecules known as P-selectins in the blood vessel walls. Yosi Shamay and colleagues further found that unlike normal tissues, many human cancers--including lung, ovarian, breast, and liver--overexpress P-selectin on tumor cells and in surrounding blood vessels. To exploit this molecule as a therapeutic target, the researchers designed nanoparticle drug carriers composed of fucoidan, a seaweed-derived compound that naturally binds to P-selectin. In a mouse model of lung cancer and metastatic melanoma and breast tumors, all of which express P-selectin, the nanoparticles selectively delivered chemotherapy drugs to the tumors, improving tumor reduction and overall survival better than did the free form of the drugs or drug-loaded nanoparticles not made of fucoidan. For tumors that do not normally express P-selectin, Shamay et al. used radiation, which is known to boost P-selectin expression in tissues, to guide the nanoparticles to the tumor site. When combined with radiation, the nanotherapy effectively shrunk lung tumors lacking P-selectin in mice. In a related Focus, Ranit Kedmi and Dan Peer discuss the promises and challenges of moving the nanotherapy to the clinic. Radiation-guided nanoparticles may offer a new tool for delivering drugs to almost any tumor, they note, but further development would need to address the double-edged sword of radiation's potential to trigger P-selectin expression that might unintentionally promote cancer spread.
-end-


American Association for the Advancement of Science

Related Nanoparticles Articles from Brightsurf:

An ionic forcefield for nanoparticles
Nanoparticles are promising drug delivery tools but they struggle to get past the immune system's first line of defense: proteins in the blood serum that tag potential invaders.

Phytoplankton disturbed by nanoparticles
Products derived from nanotechnology are efficient and highly sought-after, yet their effects on the environment are still poorly understood.

How to get more cancer-fighting nanoparticles to where they are needed
University of Toronto Engineering researchers have discovered a dose threshold that greatly increases the delivery of cancer-fighting drugs into a tumour.

Nanoparticles: Acidic alert
Researchers of Ludwig-Maximilians-Universitaet (LMU) in Munich have synthesized nanoparticles that can be induced by a change in pH to release a deadly dose of ionized iron within cells.

3D reconstructions of individual nanoparticles
Want to find out how to design and build materials atom by atom?

Directing nanoparticles straight to tumors
Modern anticancer therapies aim to attack tumor cells while sparing healthy tissue.

Sweet nanoparticles trick kidney
Researchers engineer tiny particles with sugar molecules to prevent side effect in cancer therapy.

A megalibrary of nanoparticles
Using straightforward chemistry and a mix-and-match, modular strategy, researchers have developed a simple approach that could produce over 65,000 different types of complex nanoparticles.

Dialing up the heat on nanoparticles
Rapid progress in the field of metallic nanotechnology is sparking a science revolution that is likely to impact all areas of society, according to professor of physics Ventsislav Valev and his team at the University of Bath in the UK.

Illuminating the world of nanoparticles
Scientists at the Okinawa Institute of Science and Technology Graduate University (OIST) have developed a light-based device that can act as a biosensor, detecting biological substances in materials; for example, harmful pathogens in food samples.

Read More: Nanoparticles News and Nanoparticles Current Events
Brightsurf.com is a participant in the Amazon Services LLC Associates Program, an affiliate advertising program designed to provide a means for sites to earn advertising fees by advertising and linking to Amazon.com.