Nav: Home

Radiation-guided nanoparticles zero in on metastatic cancer

June 29, 2016

Zap a tumor with radiation to trigger expression of a molecule, then attack that molecule with a drug-loaded nanoparticle. That's the approach researchers working in mice have taken in a new study that aims to make delivery of chemotherapy to metastatic tumors more effective. The researchers say that the radiation-guided nanoparticles may offer a new approach for penetrating the vascular barrier that often thwarts current nanomedicines from reaching metastatic tumors. To spread to distant organs, cancer cells in the bloodstream latch onto adhesion molecules known as P-selectins in the blood vessel walls. Yosi Shamay and colleagues further found that unlike normal tissues, many human cancers--including lung, ovarian, breast, and liver--overexpress P-selectin on tumor cells and in surrounding blood vessels. To exploit this molecule as a therapeutic target, the researchers designed nanoparticle drug carriers composed of fucoidan, a seaweed-derived compound that naturally binds to P-selectin. In a mouse model of lung cancer and metastatic melanoma and breast tumors, all of which express P-selectin, the nanoparticles selectively delivered chemotherapy drugs to the tumors, improving tumor reduction and overall survival better than did the free form of the drugs or drug-loaded nanoparticles not made of fucoidan. For tumors that do not normally express P-selectin, Shamay et al. used radiation, which is known to boost P-selectin expression in tissues, to guide the nanoparticles to the tumor site. When combined with radiation, the nanotherapy effectively shrunk lung tumors lacking P-selectin in mice. In a related Focus, Ranit Kedmi and Dan Peer discuss the promises and challenges of moving the nanotherapy to the clinic. Radiation-guided nanoparticles may offer a new tool for delivering drugs to almost any tumor, they note, but further development would need to address the double-edged sword of radiation's potential to trigger P-selectin expression that might unintentionally promote cancer spread.
-end-


American Association for the Advancement of Science

Related Nanoparticles Articles:

Chemists perform surgery on nanoparticles
A team of chemists led by Carnegie Mellon's Rongchao Jin has for the first time conducted site-specific surgery on a nanoparticle.
Nanoparticles remain unpredictable
The way that nanoparticles behave in the environment is extremely complex.
Gold standards for nanoparticles
KAUST researchers reveal how small organic 'citrate' ions can stabilize gold nanoparticles, assisting research on the structures' potential.
Lipid nanoparticles for gene therapy
Twenty-five years have passed since the publication of the first work on solid lipid nanoparticles (SLNs) and nanostructured lipid carriers (NLCs) as a system for delivering drugs.
Nanoparticles hitchhiking their way along strands of hair
In shampoo ads, hair always looks like a shiny, smooth surface.
Better contrast agents based on nanoparticles
Scientists at the University of Basel have developed nanoparticles which can serve as efficient contrast agents for magnetic resonance imaging.
Gentle cancer treatment using nanoparticles works
Cancer treatments based on laser irridation of tiny nanoparticles that are injected directly into the cancer tumor are working and can destroy the cancer from within.
Radiation-guided nanoparticles zero in on metastatic cancer
Zap a tumor with radiation to trigger expression of a molecule, then attack that molecule with a drug-loaded nanoparticle.
Nanoparticles can grow in cubic shape
Use of nanoparticles in many applications, e.g. for catalysis, relies on the surface area of the particles.
Nanoparticles deliver anticancer cluster bombs
Scientists have devised a triple-stage 'cluster bomb' system for delivering the chemotherapy drug cisplatin, via tiny nanoparticles designed to break up when they reach a tumor.

Related Nanoparticles Reading:

Nanoparticles: From Theory to Application
by Günter Schmid (Editor)

Very small particles are able to show astonishing properties. For example, gold atoms can be combined like strings of pearls, while nanoparticles can form one-, two- and three-dimensional layers. These assemblies can be used, for instance, as semiconductors, but other electronic as well as optical properties are possible.
An introduction to the booming field of "nanoworld" or "nanoscience", from fundamental principles to their use in novel applications.
With its clear structure and comprehensive coverage, backed by numerous examples from recent literature, this is a prime reference... View Details


Nanoparticles - Nanocomposites – Nanomaterials: An Introduction for Beginners
by Dieter Vollath (Author)

Meeting the demand for a readily understandable introduction to nanomaterials and nanotechnology, this textbook specifically addresses the needs of students - and engineers - who need to get the gist of nanoscale phenomena in materials without having to delve too deeply into the physical and chemical details.

The book begins with an overview of the consequences of small particle size, such as the growing importance of surface effects, and covers successful, field-tested synthesis techniques of nanomaterials. The largest part of the book is devoted to the particular magnetic, optical,... View Details


Metal Nanoparticles and Clusters: Advances in Synthesis, Properties and Applications
by Francis Leonard Deepak (Editor)

​This book covers the continually expanding field of metal nanoparticles and clusters, in particular their size-dependent properties and quantum phenomena. The approaches to the organization of atoms that form clusters and nanoparticles have been advancing rapidly in recent times. These advancements are described through a combination of experimental and computational approaches and are covered in detail by the authors. Recent highlights of the various emerging properties and applications ranging from plasmonics to catalysis are showcased.

View Details


Introduction to Metal-Nanoparticle Plasmonics
by Matthew Pelton (Author), Garnett W. Bryant (Author)

Based on a popular article in Laser and Photonics Reviews, this book provides an explanation and overview of the techniques used to model, make, and measure metal nanoparticles, detailing results obtained and what they mean. It covers the properties of coupled metal nanoparticles, the nonlinear optical response of metal nanoparticles, and the phenomena that arise when light-emitting materials are coupled to metal nanoparticles. It also provides an overview of key potential applications and offers explanations of computational and experimental techniques giving readers a solid grounding... View Details


Optical Properties of Metallic Nanoparticles: Basic Principles and Simulation (Springer Series in Materials Science)
by Andreas Trügler (Author)

This book introduces the fascinating world of plasmonics and physics at the nanoscale, with a focus on simulations and the theoretical aspects of optics and nanotechnology. A research field with numerous applications, plasmonics bridges the gap between the micrometer length scale of light and the secrets of the nanoworld. This is achieved by binding light to charge density oscillations of metallic nanostructures, so-called surface plasmons, which allow electromagnetic radiation to be focussed down to spots as small as a few nanometers. The book is a snapshot of recent and ongoing research... View Details


Metal Nanoparticles: Synthesis and Applications in Pharmaceutical Sciences
by Sreekanth Thota (Editor), Debbie C. Crans (Editor)

View Details


Smart Nanoparticles for Biomedicine (Micro and Nano Technologies)
by Gianni Ciofani (Editor)

Smart Nanoparticles for Biomedicine explores smart nanoparticles that change their structural or functional properties in response to specific external stimuli (electric or magnetic fields, electromagnetic radiation, ultrasound, etc.). Particular attention is given to multifunctional nanostructured materials that are pharmacologically active and that can be actuated by virtue of their magnetic, dielectric, optically-active, redox-active, or piezoelectric properties. This important reference resource will be of great value to readers who want to learn more on how smart nanoparticles... View Details


Nanoparticles (De Gruyter Textbook)
by Raz Jelinek (Author)

Nanoparticles presents the variety of nanoparticle families, structures, and functions. The book discusses nanoparticles made of semiconductors, metals, metal-oxides, organics, biological and hybrid constituents. Through a wealth of examples and case studies, readers that are not necessarily active or experts in this area acquire a broad overview of this exciting field at the interface between scientific research and practical technologies.

View Details


Nanoparticles: Workhorses of Nanoscience
by Celso de Mello Donegá (Editor)

This book can be roughly divided into three parts: fundamental physico-chemical and physical principles of Nanoscience, chemistry and synthesis of nanoparticles, and techniques to study nanoparticles. The first chapter is concerned with the origin of the size dependence of the properties of nanomaterials, explaining it in terms of two fundamental nanoscale effects. This chapter also serves as a general introduction to the book, briefly addressing the definition and classification of nanomaterials and the techniques used to fabricate and study them. Chapter 2 lays out the theoretical... View Details


Microwaves in Nanoparticle Synthesis: Fundamentals and Applications
by Satoshi Horikoshi (Editor), Nick Serpone (Editor)

For the first time, this comprehensive handbook presents the emerging field of microwave technology for the synthesis of nanoparticles. Divided into three parts--fundamentals, methods, and applications--it covers topics including microwave theory, scale-up, microwave plasma synthesis, characterization, and more. This offers both an important volume for academic researchers, and a resource for those in industry exploring the applications of nanoparticles in semiconductors, electronics, catalysis, sensors, and more. View Details

Best Science Podcasts 2018

We have hand picked the best science podcasts for 2018. Sit back and enjoy new science podcasts updated daily from your favorite science news services and scientists.
Now Playing: TED Radio Hour

Turning Kids Into Grown-Ups
Parenting is fraught with uncertainty, changing with each generation. This hour, TED speakers share ideas about raising kids and how — despite our best efforts — we're probably still doing it wrong. Guests include former Stanford dean Julie Lythcott-Haims, former firefighter Caroline Paul, author Peggy Orenstein, psychologist Dr. Aala El-Khani, and poet Sarah Kay.
Now Playing: Science for the People

#470 Information Spookyhighway
This week we take a closer look at a few of the downsides of the modern internet, and some of the security and privacy challenges that are becoming increasingly troublesome. Rachelle Saunders speaks with cyber security expert James Lyne about how modern hacking differs from the hacks of old, and how an internet without national boards makes it tricky to police online crime across jurisdictions. And Bethany Brookshire speaks with David Garcia, a computer scientist at the Complexity Science Hub and the Medical University of Vienna, about the recent Cambridge Analytica scandal, and how social media platforms put a wrench...