Nav: Home

Collisions during DNA replication and transcription contribute to mutagenesis

June 29, 2016

When a cell makes copies of DNA and translates its genetic code into proteins at the same time, the molecular machinery that carries on replication and the one that transcribes the DNA to the mRNA code move along the same DNA double strand as their respective processes take place. Sometimes replication and transcription proceed on the same direction, but sometimes the processes are in a collision course. Researchers at Baylor College of Medicine and the University of Wisconsin have determined that these collisions can significantly contribute to mutagenesis. Their results appear today in Nature.

"We first developed a laboratory assay that would allow us to detect a wide range of mutations in a specific gene in the bacteria Bacillus subtilis," said corresponding author Dr. Jue D. Wang, who was an associate professor of molecular & human genetics at Baylor when a portion of the work was completed and is currently with the University of Wisconsin, Madison. "In some bacteria, we introduced the gene so the processes of replication and transcription would proceed on the same direction. In other bacteria the gene was engineered so the processes would collide head-on."

The researchers discovered that when replication and transcription were oriented toward a head-on collision path the mutation rate was higher than when their paths followed the same direction. Furthermore, most of the mutations caused by replication transcription conflicts were either insertions/deletions or substitutions in the promoter region of the gene, the region that controls gene expression.

"People have mostly been looking at mutations in the DNA sequence that codes for protein, but in this paper we found that the promoter, the regulatory element of gene expression, is very susceptible to mutagenesis," said Wang, "and this susceptibility is facilitated by head-on transcription and DNA replication."

Promoters control how much of a gene is transcribed; for instance, particular mutations in promoters may enhance or reduce the production of proteins, or silence them completely. These genetic changes in gene expression may affect an organism's health.

"The mutation mechanism we identified is not just applicable to our experimental system, but can potentially contribute to mutations that alter gene expression in a genome-wide scale, from bacteria to humans," said Wang.
-end-
Other contributors to this work include T. Sabari Sankar from Baylor and the University of Wisconsin, Brigitta Wastuwidyaningtyas and Sarah Lewis from Baylor and Yuexin Dong from the University of Wisconsin.

This work was supported by the National Institutes of Health Director's New Innovator Award DP20D004433.

Baylor College of Medicine

Related Bacteria Articles:

Conducting shell for bacteria
Under anaerobic conditions, certain bacteria can produce electricity. This behavior can be exploited in microbial fuel cells, with a special focus on wastewater treatment schemes.
Controlling bacteria's necessary evil
Until now, scientists have only had a murky understanding of how these relationships arise.
Bacteria take a deadly risk to survive
Bacteria need mutations -- changes in their DNA code -- to survive under difficult circumstances.
How bacteria hunt other bacteria
A bacterial species that hunts other bacteria has attracted interest as a potential antibiotic, but exactly how this predator tracks down its prey has not been clear.
Chlamydia: How bacteria take over control
To survive in human cells, chlamydiae have a lot of tricks in store.
Stress may protect -- at least in bacteria
Antibiotics harm bacteria and stress them. Trimethoprim, an antibiotic, inhibits the growth of the bacterium Escherichia coli and induces a stress response.
'Pulling' bacteria out of blood
Magnets instead of antibiotics could provide a possible new treatment method for blood infection.
New findings detail how beneficial bacteria in the nose suppress pathogenic bacteria
Staphylococcus aureus is a common colonizer of the human body.
Understanding your bacteria
New insight into bacterial cell division could lead to advancements in the fight against harmful bacteria.
Bacteria are individualists
Cells respond differently to lack of nutrients.

Related Bacteria Reading:

Best Science Podcasts 2019

We have hand picked the best science podcasts for 2019. Sit back and enjoy new science podcasts updated daily from your favorite science news services and scientists.
Now Playing: TED Radio Hour

Bias And Perception
How does bias distort our thinking, our listening, our beliefs... and even our search results? How can we fight it? This hour, TED speakers explore ideas about the unconscious biases that shape us. Guests include writer and broadcaster Yassmin Abdel-Magied, climatologist J. Marshall Shepherd, journalist Andreas Ekström, and experimental psychologist Tony Salvador.
Now Playing: Science for the People

#513 Dinosaur Tails
This week: dinosaurs! We're discussing dinosaur tails, bipedalism, paleontology public outreach, dinosaur MOOCs, and other neat dinosaur related things with Dr. Scott Persons from the University of Alberta, who is also the author of the book "Dinosaurs of the Alberta Badlands".