Nav: Home

As sea level rises, Hudson River wetlands may expand

June 29, 2016

In the face of climate change impact and inevitable sea level rise, Cornell and Scenic Hudson scientists studying New York's Hudson River estuary have forecast new intertidal wetlands, comprising perhaps 33 percent more wetland area by the year 2100.

"In other parts of the world, sea level rise has led to net losses of tidal wetland and to permanent inundation," said Magdeline Laba, Cornell senior research associate in soil and crop sciences.

In terms of population, the Hudson River valley is one of the fastest growing regions in the state, she explained, as the transportation network and industry border both sides of the river. "Taking this into account, it is quite surprising that wetlands have any area at all to expand into," Laba said. "There will be a net increase in total wetlands, instead of a decrease, which is really amazing."

The net predicted wetland increase is due to the upland migration of existing marshes, she said. "That's fantastic. I never thought that would be a result. These marshes are amazingly resilient."

The Hudson River estuary hosts one of the largest concentrations of freshwater tidal wetlands in the Northeast, stretching 150 miles from Manhattan to Troy, just north of Albany. While the river might be considered brackish toward Manhattan, about 80 percent of the river's tidal wetlands sit beyond the Atlantic's salty reach.

Sea level rise prompts scientific concern for infrastructure and population near the Hudson, but scientists must preserve its unique biodiversity, Laba said. The river's marshes cycle nutrients, filter water, offer habitat for fish and wildlife, and buffer against storms. Laba conducts research with remote sensing, taking into account various facets of the tidal river's ecology, including shore elevation and slope, land cover, tides and accretion rates, which are how the marshes build up over time.

Working with conservation scientists Nava Tabak, of the nonprofit group Scenic Hudson, and Sacha Spector, formerly with Scenic Hudson, now with the Doris Duke Charitable Foundation, Laba and her colleagues employed the Sea Level Affecting Marshes Model, or SLAMM, which simulates wetland conversions and shoreline changes in tidal habitats. The model, developed for brackish coastal plain wetlands, was adapted - for the first time - to examine the freshwater Hudson River estuary.

Examining 20-year intervals to simulate estuarial changes created by rising Atlantic Ocean waters entering at the Hudson's mouth, the scientists project broad shifts in wetland composition, with widespread conversion of high marsh habitat (driest) to low marsh (wet), tidal flat or permanent water inundation. Based on tide gauge readings, the river has risen about 0.7 centimeters annually since 2000. The forecast for rising water ranges from 28 centimeters (less than a foot) to nearly 1.9 meters (6 feet) over the next 80 years.

The Hudson River currently supports about 7,000 acres of tidal wetlands. The models project that within the next 100 years, wetlands will increase to approximately 8,100 to 10,900 acres.

The region immediately south of Albany likely will see an expansion of wetland areas along the Hudson, creating expanded habitats for fish, animals and birds. Some steep-sided wetland areas in other parts of the estuary have limited inland-migration potential and are more susceptible to net losses of wetland.

Equipped with this new research, the Scenic Hudson group has developed an action plan to conserve current wetlands and future expansions. The plan was released in May at the New York State Land Conservation Summit.
Their research, "Simulating the Effects of Sea Level Rise on the Resilience and Migration of Tidal Wetlands along the Hudson River," was published in PLOS One in April. It was funded by a grant from the Wildlife Conservation Society's Climate Adaptation Fund and the Hudson River Estuary Program.

Cornell University

Related Sea Level Rise Articles:

Researchers untangle causes of differences in East Coast sea level rise
For years, scientists have been warning of a so-called 'hot spot' of accelerated sea-level rise along the northeastern US coast, but understanding the causes has proven challenging.
Migration from sea-level rise could reshape cities inland
Researchers estimate that approximately 13.1 million people could be displaced by rising ocean waters.
Louisiana wetlands struggling with sea-level rise 4 times the global average
Without major efforts to rebuild Louisiana's wetlands, particularly in the westernmost part of the state, there is little chance that the coast will be able to withstand the accelerating rate of sea-level rise, a new Tulane University study concludes.
How an Ice Age paradox could inform sea level rise predictions
New findings from the University of Michigan explain an Ice Age paradox and add to the mounting evidence that climate change could bring higher seas than most models predict.
Regional sea-level scenarios will help Northeast plan for faster-than-global rise
Sea level in the Northeast and in some other US regions will rise significantly faster than the global average, according to a report released by the National Oceanic and Atmospheric Administration.
Short-lived greenhouse gases cause centuries of sea-level rise
Even if there comes a day when the world completely stops emitting greenhouse gases into the atmosphere, coastal regions and island nations will continue to experience rising sea levels for centuries afterward, according to a new study by researchers at MIT and Simon Fraser University.
Climate change could trigger strong sea level rise
About 15,000 years ago, the ocean around Antarctica has seen an abrupt sea level rise of several meters.
Historical records may underestimate global sea level rise
New research from scientists at University of Hawai'i at Mānoa, Old Dominion University, and the NASA Jet Propulsion Laboratory shows that the longest and highest-quality records of historical ocean water levels may underestimate the amount of global average sea level rise that occurred during the 20th century.
Volcanic eruption masked acceleration in sea level rise
The cataclysmic 1991 eruption of Mount Pinatubo in the Philippines masked the full impact of greenhouse gases on accelerating sea level rise, according to a new study.
By mid-century, more Antarctic snowfall may help offset sea-level rise
Scientists have used historical records and climate simulations to examine snowfall trends in Antarctica.

Related Sea Level Rise Reading:

Best Science Podcasts 2019

We have hand picked the best science podcasts for 2019. Sit back and enjoy new science podcasts updated daily from your favorite science news services and scientists.
Now Playing: TED Radio Hour

Failure can feel lonely and final. But can we learn from failure, even reframe it, to feel more like a temporary setback? This hour, TED speakers on changing a crushing defeat into a stepping stone. Guests include entrepreneur Leticia Gasca, psychology professor Alison Ledgerwood, astronomer Phil Plait, former professional athlete Charly Haversat, and UPS training manager Jon Bowers.
Now Playing: Science for the People

#524 The Human Network
What does a network of humans look like and how does it work? How does information spread? How do decisions and opinions spread? What gets distorted as it moves through the network and why? This week we dig into the ins and outs of human networks with Matthew Jackson, Professor of Economics at Stanford University and author of the book "The Human Network: How Your Social Position Determines Your Power, Beliefs, and Behaviours".