Nav: Home

Osaka University researchers push metals to their limits

June 29, 2017

Osaka, Japan - Modern aircraft and power generation turbines depend on precision-machined parts that can withstand harsh mechanical forces in high-temperature environments. In many cases, higher operating temperatures lead to more efficient performance. This motivates the search for new ultrahigh-temperature metal alloys that can maintain their shape and strength at temperatures where ordinary steel would melt.

Building on their research into a promising mixed alloy, a team of researchers at Osaka University have made a new breakthrough by adding metals to generate a unique structure that shows exceptional performance.

"Our previous alloy was a blend of different transition-metal disilicides, which were arranged in a lamellar structure," says lead author Koji Hagihara. "Although the alloy's performance was good, it did not meet requirements for room temperature toughness and still showed some deformation at very high temperatures."

Transition-metal disilicides are lightweight alloys with good high temperature resistance, ideally suited for ultrahigh-temperature applications. The Osaka team previously combined two different types of transition-metal disilicides to form a microscopic structure with alternating layers of different alloy crystal. This "lamellar" arrangement improved the alloy strength, but some problems remained because of the low strength along the direction parallel to the two-phase interface.

Now, the team has added two new metals to the alloy mixture to form a "cross-lamellar microstructure." The added metals cause new crystals to grow, which penetrate the crystal layer structure, similar to staples piercing a stack of paper. This effect prevents the deformation parallel to the lamellar interface and considerably improves the mechanical performance of the alloy.

"Other researchers should take note of this unique cross-lamellar microstructure as a way of improving high-temperature creep strength and fracture toughness in ultrahigh temperature alloys," says group leader Takayoshi Nakano. "The performance of our alloy is now closer to meeting the demands of practical engineering applications. The efficiency gains from using ultrahigh temperature materials in gas turbines and jet engines could have a real impact on CO2 emissions and global warming."
-end-
The article, "Outstanding compressive creep strength in Cr/Ir-codoped (Mo0.85Nb0.15)Si2 crystals with the unique cross-lamellar microstructure" was published in Scientific Reports at DOI:10.1038/s41598-017-04163-0

Osaka University

Related Research Articles:

More Research News and Research Current Events

Top Science Podcasts

We have hand picked the top science podcasts of 2019.
Now Playing: TED Radio Hour

Risk
Why do we revere risk-takers, even when their actions terrify us? Why are some better at taking risks than others? This hour, TED speakers explore the alluring, dangerous, and calculated sides of risk. Guests include professional rock climber Alex Honnold, economist Mariana Mazzucato, psychology researcher Kashfia Rahman, structural engineer and bridge designer Ian Firth, and risk intelligence expert Dylan Evans.
Now Playing: Science for the People

#540 Specialize? Or Generalize?
Ever been called a "jack of all trades, master of none"? The world loves to elevate specialists, people who drill deep into a single topic. Those people are great. But there's a place for generalists too, argues David Epstein. Jacks of all trades are often more successful than specialists. And he's got science to back it up. We talk with Epstein about his latest book, "Range: Why Generalists Triumph in a Specialized World".
Now Playing: Radiolab

Dolly Parton's America: Neon Moss
Today on Radiolab, we're bringing you the fourth episode of Jad's special series, Dolly Parton's America. In this episode, Jad goes back up the mountain to visit Dolly's actual Tennessee mountain home, where she tells stories about her first trips out of the holler. Back on the mountaintop, standing under the rain by the Little Pigeon River, the trip triggers memories of Jad's first visit to his father's childhood home, and opens the gateway to dizzying stories of music and migration. Support Radiolab today at Radiolab.org/donate.