New avenue for the large-scale synthesis of 'God' Janus particles

June 29, 2017

Chinese researchers have developed an emulsion interfacial polymerization method to fabricate Janus particles exhibiting chemical and topological anisotropy.

Results were published in the journal Science Advances, in an article entitled "A general strategy to synthesize chemically and topologically anisotropic Janus particles."

Polymer particle materials have a giant effect on daily human life, largely due to the topology and surface chemistry of polymer particles. Emulsion polymerization is a traditionally leading synthesis technique for particles. However, it usually produces spherical particles due to surface tension, posing a challenge for fine-tuning the topology and chemistry of particles.

To overcome the limitation of surface tension, researchers from the Technical Institute of Physics and Chemistry of the Chinese Academy of Sciences recently developed a general emulsion interfacial polymerization approach to synthesizing a large variety of Janus particles with controllable topological and chemical anisotropy.

In the study, they chose to use a typical oil-in-water emulsion system - styrene (St) and divinyl benzene (DVB) in water emulsion - into which hydrophilic monomers (e.g., acrylic acid (AA) or acrylamide (AM), etc.) were introduced as anchoring molecules. The polymerization was initially designed to occur inside an oil droplet.

The researchers found that a particle nucleus could be produced inside oil droplets and the particle nucleus would move toward the oil/water interface. The hydrophilic anchoring monomers in the external water phase could then contact the particle nucleus and be initiated to polymerize, triggering interfacial anchoring polymerization.

On the interface, based on the principle of equal chemical potential at equilibrium, preferential copolymerization of AA, St and DVB occurred along the interface in two directions, resulting in the formation of crescent-moon shaped Janus particles.

The researchers' theoretical simulation consistently suggested preferential growth, similar to what they obtained in the experiment.

This novel method will significantly expand the utility of Janus particles, creating new opportunities in a wide variety of applications, ranging from the environment to health, especially in those involving oil-water separation and biological detection.

The approach can produce Janus particles with anisotropic topologies and amphiphilicity (Fig.2). The researchers' emulsion polymerization approach produced approximately 5 g of uniform Janus particles in one batch, providing an effective way to synthesize Janus particles on a large scale.

Their emulsion interfacial polymerization strategy can be used for polymerizing various vinyl monomers, including positively charged, neutrally charged and negatively charged ones, greatly enriching the community of Janus particles. This method can also be expanded to large-area fabricate two-dimensional Janus film actuators (Wang, et al. NPG Asia Mater. 2017, 9, e380; Mater. Chem. Front., 2017, 1, 1028).
This work was financially supported by the National Science Fund for Distinguished Young Scholars and the Beijing Municipal Science and Technology Commission, among others.

Chinese Academy of Sciences Headquarters

Related Physics Articles from Brightsurf:

Helium, a little atom for big physics
Helium is the simplest multi-body atom. Its energy levels can be calculated with extremely high precision only relying on a few fundamental physical constants and the quantum electrodynamics (QED) theory.

Hyperbolic metamaterials exhibit 2T physics
According to Igor Smolyaninov of the University of Maryland, ''One of the more unusual applications of metamaterials was a theoretical proposal to construct a physical system that would exhibit two-time physics behavior on small scales.''

Challenges and opportunities for women in physics
Women in the United States hold fewer than 25% of bachelor's degrees, 20% of doctoral degrees and 19% of faculty positions in physics.

Indeterminist physics for an open world
Classical physics is characterized by the equations describing the world.

Leptons help in tracking new physics
Electrons with 'colleagues' -- other leptons - are one of many products of collisions observed in the LHCb experiment at the Large Hadron Collider.

Has physics ever been deterministic?
Researchers from the Austrian Academy of Sciences, the University of Vienna and the University of Geneva, have proposed a new interpretation of classical physics without real numbers.

Twisted physics
A new study in the journal Nature shows that superconductivity in bilayer graphene can be turned on or off with a small voltage change, increasing its usefulness for electronic devices.

Physics vs. asthma
A research team from the MIPT Center for Molecular Mechanisms of Aging and Age-Related Diseases has collaborated with colleagues from the U.S., Canada, France, and Germany to determine the spatial structure of the CysLT1 receptor.

2D topological physics from shaking a 1D wire
Published in Physical Review X, this new study propose a realistic scheme to observe a 'cold-atomic quantum Hall effect.'

Helping physics teachers who don't know physics
A shortage of high school physics teachers has led to teachers with little-to-no training taking over physics classrooms, reports show.

Read More: Physics News and Physics Current Events is a participant in the Amazon Services LLC Associates Program, an affiliate advertising program designed to provide a means for sites to earn advertising fees by advertising and linking to