Nav: Home

Atomic 'patchwork' using heteroepitaxy for next generation semiconductor devices

June 29, 2019

Tokyo, Japan - Researchers from Tokyo Metropolitan University have grown atomically thin crystalline layers of transition metal dichalcogenides (TMDCs) with varying composition over space, continuously feeding in different types of TMDC to a growth chamber to tailor changes in properties. Examples include 20nm strips surrounded by different TMDCs with atomically straight interfaces, and layered structures. They also directly probed the electronic properties of these heterostructures; potential applications include electronics with unparalleled power efficiency.

Semiconductors are indispensable in the modern age; silicon-based integrated circuits underpin the operation of all things digital, from discrete devices like computers, smartphones and home appliances to control components for every possible industrial application. A broad range of scientific research has been directed to the next steps in semiconductor design, particularly the application of novel materials to engineer more compact, efficient circuitry which leverages the quantum mechanical behavior of materials at the nanometer length scale. Of special interest are materials with a fundamentally different dimensionality; the most famous example is graphene, a two-dimensional lattice of carbon atoms which is atomically thin.

Transition metal dichalcogenides (or TMDCs) are promising candidates for incorporation into new semiconductor devices. Composed of transition metals like molybdenum and tungsten and a chalcogen (or Group 16 element) like sulfur or selenium, they can form layered crystalline structures whose properties change drastically when the metallic element is changed, from normal metals to semiconductors, even to superconductors. By controllably weaving domains of different TMDCs into a single heterostructure (made of domains with different composition), it may be possible to produce atomically thin electronics with distinct, superior properties to existing devices.

A team led by Dr. Yu Kobayashi and Associate Professor Yasumitsu Miyata from Tokyo Metropolitan University has been at the cutting edge of efforts to create two-dimensional heterostructures with different TMDCs using vapor-phase deposition, the deposition of precursor material in a vapor state onto a surface to make atomically flat crystalline layers. One of the biggest challenges they faced was creating a perfectly flat interface between different domains, an essential feature for getting the most out of these devices. Now, they have succeeded in engineering a continuous process to grow well-defined crystalline strips of different TMDCs at the edge of existing domains, creating strips as thin as 20nm with a different composition. Their new process uses liquid precursors which can be sequentially fed into a growth chamber; by optimizing the growth rate, they were able to grow heterostructures with distinct domains linked perfectly over atomically straight edges. They directly imaged the linkage using scanning tunneling microscopy (STM), finding excellent agreement with first-principles numerical simulations of what an ideal interface should look like. The team used four different TMDCs, and also realized a layer-on-layer heterostructure.

By creating atomically sharp interfaces, electrons may be effectively confined to one-dimensional spaces on these 2D devices, for exquisite control of electron transport and resistivity as well as optical properties. The team hopes that this may pave the way to devices with unparalleled energy efficiency and novel optical properties.
-end-
This work was supported by a JST CREST Grant (number JPMJCR16F3) and JSPS KAKENHI Grants (numbers JP18H01832, JP17H06088, JP15H05412, and JP16H00918). The study has been published online in the journal ACS Nano.

Tokyo Metropolitan University

Related Optical Properties Articles:

Squid pigments have antimicrobial properties
Ommochromes, the pigments that color the skin of squids and other invertebrates, could be used in the food and health sectors for their antioxidant and antimicrobial properties.
Controlling the optical properties of solids with acoustic waves
Physicists from Switzerland, Germany, and France have found that large-amplitude acoustic waves, launched by ultrashort laser pulses, can dynamically manipulate the optical response of semiconductors.
Clean carbon nanotubes with superb properties
Scientists at Aalto University, Finland, and Nagoya University, Japan, have found a new way to make ultra-clean carbon nanotube transistors with superior semiconducting properties.
New metamaterial morphs into new shapes, taking on new properties
Electrochemical reactions drive shape change in new nanoarchitected metamaterial.
Molecule properties change through light
Green light affects this chemical compound in a different way than blue light.
Switching electron properties on and off individually
Electrons have different properties - and they all can be used to create order in solid objects.
Printing flattens polymers, improving electrical and optical properties
Researchers have found a way to use polymer printing to stretch and flatten twisted molecules so that they conduct electricity better.
Researchers can now predict properties of disordered polymers
Thanks to a team of researchers from the University of Illinois at Urbana-Champaign and the University of Massachusetts Amherst, scientists are able to read patterns on long chains of molecules to understand and predict behavior of disordered strands of proteins and polymers.
Colloidal gel properties under the microscope
Researchers at The University of Tokyo have devised a method for following the gelation of colloidal gels.
Researchers 3D print metamaterials with novel optical properties
A team of engineers has developed a series of 3D printed metamaterials with unique microwave or optical properties that go beyond what is possible using conventional optical or electronic materials.
More Optical Properties News and Optical Properties Current Events

Trending Science News

Current Coronavirus (COVID-19) News

Top Science Podcasts

We have hand picked the top science podcasts of 2020.
Now Playing: TED Radio Hour

Clint Smith
The killing of George Floyd by a police officer has sparked massive protests nationwide. This hour, writer and scholar Clint Smith reflects on this moment, through conversation, letters, and poetry.
Now Playing: Science for the People

#562 Superbug to Bedside
By now we're all good and scared about antibiotic resistance, one of the many things coming to get us all. But there's good news, sort of. News antibiotics are coming out! How do they get tested? What does that kind of a trial look like and how does it happen? Host Bethany Brookeshire talks with Matt McCarthy, author of "Superbugs: The Race to Stop an Epidemic", about the ins and outs of testing a new antibiotic in the hospital.
Now Playing: Radiolab

Dispatch 6: Strange Times
Covid has disrupted the most basic routines of our days and nights. But in the middle of a conversation about how to fight the virus, we find a place impervious to the stalled plans and frenetic demands of the outside world. It's a very different kind of front line, where urgent work means moving slow, and time is marked out in tiny pre-planned steps. Then, on a walk through the woods, we consider how the tempo of our lives affects our minds and discover how the beats of biology shape our bodies. This episode was produced with help from Molly Webster and Tracie Hunte. Support Radiolab today at Radiolab.org/donate.