Nav: Home

First measurement of spin-orbit alignment on planet Beta Pictoris b

June 29, 2020

Astronomers have made the first measurement of spin-orbit alignment for a distant 'super-Jupiter' planet, demonstrating a technique that could enable breakthroughs in the quest to understand how exoplanetary systems form and evolved.

An international team of scientists, led by Professor Stefan Kraus from the University of Exeter, has carried out the measurements for the exoplanet Beta Pictoris b - located 63 light years from Earth.

The planet, found in the Pictor constellation, has a mass of around 11 times that of Jupiter and orbits a young star on a similar orbit as Saturn in our solar system.

The study, published today (June 29th 2020) in the Astrophysical Journal Letters, marks the first time that scientists have measured the spin-orbit alignment for a directly-imaged planetary system.

Crucially, the results give a fresh insight into enhancing our understanding of the formation history and evolution of the planetary system.

Professor Kraus said: "The degree to that a star and a planetary orbit are aligned with each other tells us a lot about how a planet formed and whether multiple planets in the system interacted dynamically after their formation."

Some of the earliest theories of the planet formation process were proposed by prominent 18th century astronomers Kant and Laplace. They noted that the orbits of the solar system planets are aligned with each other, and with the Sun's spin axis, and concluded that the solar system formed from a rotating and flattened protoplanetary disc.

"It was a major surprise when it was found that more than a third of all close-in exoplanets orbit their host star on orbits that are misaligned with respect to the stellar equator.", said Prof. Kraus.

"A few exoplanets were even found to orbit in the opposite direction than the rotation direction of the star. These observations challenge the perception of planet formation as a neat and well-ordered process taking place in a geometrically thin and co-planar disc."

For the study, the researchers devised an innovative method that measures the tiny spatial displacement of less than a billionth of a degree that is caused by Beta Pictoris' rotation.

The team used the GRAVITY instrument at the VLTI, which combines the light from telescopes separated 140 metres apart, to carry out the measurements. They found that the stellar rotation axis is aligned with the orbital axes of the planet Beta Pictoris b and its extended debris disc.

"Gas absorption in the stellar atmosphere causes a tiny spatial displacement in spectral lines that can be used to determine the orientation of the stellar rotation axis.", said Dr. Jean-Baptiste LeBouquin, an astronomer at the University of Grenoble in France and a member of the team.

"The challenge is that this spatial displacement is extremely small: about 1/100th of the apparent diameter of the star, or the equivalent to the size of a human footstep on the moon as seen from Earth."

The results show that the Beta Pictoris system is as well-aligned as our own solar system. This finding favors planet-planet scattering as the cause for the orbit obliquities that are observed in more exotic systems with Hot Jupiters.

However, observations on a large sample of planetary systems will be required to answer this question conclusively. The team proposes a new interferometric instrument that will allow them to obtain these measurements on many more planetary systems that are about to be discovered.

"A dedicated high-spectral resolution instrument at VLTI could measure the spin-orbit alignment for hundreds of planets, including those on long-period orbits.", said Prof. Kraus, "This will help us to answer the question what dynamical processes shape the architecture of planetary systems."
-end-


University of Exeter

Related Solar System Articles:

Pressure runs high at edge of solar system
Out at the boundary of our solar system, pressure runs high.
What a dying star's ashes tell us about the birth of our solar system
A UA-led team of researchers discovered a dust grain forged in a stellar explosion before our solar system was born.
What scientists found after sifting through dust in the solar system
Two recent studies report discoveries of dust rings in the inner solar system: a dust ring at Mercury's orbit, and a group of never-before-detected asteroids co-orbiting with Venus, supplying the dust in Venus' orbit.
Discovered: The most-distant solar system object ever observed
A team of astronomers has discovered the most-distant body ever observed in our solar system.
Discovery of the first body in the Solar System with an extrasolar origin
Asteroid 2015 BZ509 is the very first object in the Solar System shown to have an extrasolar origin.
First interstellar immigrant discovered in the solar system
A new study has discovered the first known permanent immigrant to our solar system.
A star disturbed the comets of the solar system in prehistory
About 70,000 years ago, when the human species was already on Earth, a small reddish star approached our solar system and gravitationally disturbed comets and asteroids.
Scientists detect comets outside our solar system
Scientists from MIT and other institutions, working closely with amateur astronomers, have spotted the dusty tails of six exocomets -- comets outside our solar system -- orbiting a faint star 800 light years from Earth.
Does the organic material of comets predate our solar system?
The Rosetta space probe discovered a large amount of organic material in the nucleus of comet 'Chury.' In an article published by MNRAS on Aug.
Tracking a solar eruption through the solar system
Ten spacecraft, from ESA's Venus Express to NASA's Voyager-2, felt the effect of a solar eruption as it washed through the solar system while three other satellites watched, providing a unique perspective on this space weather event.
More Solar System News and Solar System Current Events

Trending Science News

Current Coronavirus (COVID-19) News

Top Science Podcasts

We have hand picked the top science podcasts of 2020.
Now Playing: TED Radio Hour

Making Amends
What makes a true apology? What does it mean to make amends for past mistakes? This hour, TED speakers explore how repairing the wrongs of the past is the first step toward healing for the future. Guests include historian and preservationist Brent Leggs, law professor Martha Minow, librarian Dawn Wacek, and playwright V (formerly Eve Ensler).
Now Playing: Science for the People

#566 Is Your Gut Leaking?
This week we're busting the human gut wide open with Dr. Alessio Fasano from the Center for Celiac Research and Treatment at Massachusetts General Hospital. Join host Anika Hazra for our discussion separating fact from fiction on the controversial topic of leaky gut syndrome. We cover everything from what causes a leaky gut to interpreting the results of a gut microbiome test! Related links: Center for Celiac Research and Treatment website and their YouTube channel
Now Playing: Radiolab

The Flag and the Fury
How do you actually make change in the world? For 126 years, Mississippi has had the Confederate battle flag on their state flag, and they were the last state in the nation where that emblem remained "officially" flying.  A few days ago, that flag came down. A few days before that, it coming down would have seemed impossible. We dive into the story behind this de-flagging: a journey involving a clash of histories, designs, families, and even cheerleading. This show is a collaboration with OSM Audio. Kiese Laymon's memoir Heavy is here. And the Hospitality Flag webpage is here.