Nav: Home

Quantum physics provides a way to hide ignorance

June 29, 2020

Students can hide their ignorance and answer questions correctly in an exam without their lack of knowledge being detected by teachers - but only in the quantum world.

University of Queensland researchers have successfully verified a counterintuitive idea from quantum theory - that ignorance of the whole does not necessarily imply ignorance of the parts - in the lab.

UQ physicist Dr Jacqui Romero from the ARC Centre of Excellence for Engineered Quantum Systems (EQUS) said the team's findings would be important when evaluating security in quantum encryption.

"What's also really nice is that we provide an accessible, real-world interpretation of a statement that comes from pure probability theory," Dr Romero said.

According to classical intuition, ignorance can be traced to a source - if a student's knowledge of a book is incomplete, a teacher can design a test to probe which parts of the book are unknown to the student.

UQ PhD candidate and EQUS experimental physicist Michael Kewming said that this wasn't always the case in the quantum world.

"Our results confirm that the student's source of ignorance can be concealed from the teacher using quantum systems," Mr Kewming said.

"When we communicate, we use special symbols called letters that form an alphabet.

"In our study, we do the same thing but we use light to create a quantum alphabet."

According to Mr Kewming quantum alphabets have strange properties.

"Let's say the student is sitting an exam that covers two topics, and although they haven't studied they've been given a single hint by a knowledgeable friend," he said.

"In the classical situation, this hint can only be so helpful - providing information about only one topic - and the teacher can still uncover which topic the student is ignorant of.

"But a hint written using our quantum alphabet could simultaneously contain information about both topics, despite appearing to be about only one.

"As a result, the teacher cannot determine the source of the student's ignorance because the hint is always useful to the student."

The UQ research team was able to verify this in a physical experiment by writing information in the shape of single photons - the particles that make up light.

"Our result has implications for the security of quantum-based encryption because we have shown that what is true for classical hints is not true for quantum hints," Dr Romero said.

Unfortunately for students preparing for exams, quantum hints won't be available outside the lab anytime soon.

The results are published in Physical Review Letters.
-end-


University of Queensland

Related Quantum Articles:

Quantum shake
There they were, in all their weird quantum glory: ultracold lithium atoms in the optical trap operated by UC Santa Barbara undergraduate student Alec Cao and his colleagues in David Weld's atomic physics group.
New evidence for quantum fluctuations near a quantum critical point in a superconductor
A study has found evidence for quantum fluctuations near a quantum critical point in a superconductor.
Quantum simulation of quantum crystals
International research team describes the new possibilities offered by the use of ultracold dipolar atoms
Quantum machines learn "quantum data"
Skoltech scientists have shown that quantum-enhanced machine learning can be used on quantum (as opposed to classical) data, overcoming a significant slowdown common to these applications and opening a ''fertile ground to develop computational insights into quantum systems''.
Simulating quantum 'time travel' disproves butterfly effect in quantum realm
Using a quantum computer to simulate time travel, researchers have demonstrated that, in the quantum realm, there is no 'butterfly effect.' In the research, information--qubits, or quantum bits--'time travel' into the simulated past.
Orbital engineering of quantum confinement in high-Al-content AlGaN quantum well
Recently, professor Kang's group focus on the limitation of quantum confine band offset model, the hole states delocalization in high-Al-content AlGaN quantum well are understood in terms of orbital intercoupling.
Quantum classifiers with tailored quantum kernel?
Quantum information scientists have introduced a new method for machine learning classifications in quantum computing.
A Metal-like Quantum Gas: A pathbreaking platform for quantum simulation
Coherent and ultrafast laser excitation creates an exotic matter phase with spatially overlapping electronic wave-functions under nanometric control in an artificial micro-crystal of ultracold atoms.
Quantum leap: Photon discovery is a major step toward at-scale quantum technologies
A team of physicists at the University of Bristol has developed the first integrated photon source with the potential to deliver large-scale quantum photonics.
USTC realizes the first quantum-entangling-measurements-enhanced quantum orienteering
Researchers enhanced the performance of quantum orienteering with entangling measurements via photonic quantum walks.
More Quantum News and Quantum Current Events

Trending Science News

Current Coronavirus (COVID-19) News

Top Science Podcasts

We have hand picked the top science podcasts of 2020.
Now Playing: TED Radio Hour

Debbie Millman: Designing Our Lives
From prehistoric cave art to today's social media feeds, to design is to be human. This hour, designer Debbie Millman guides us through a world made and remade–and helps us design our own paths.
Now Playing: Science for the People

#574 State of the Heart
This week we focus on heart disease, heart failure, what blood pressure is and why it's bad when it's high. Host Rachelle Saunders talks with physician, clinical researcher, and writer Haider Warraich about his book "State of the Heart: Exploring the History, Science, and Future of Cardiac Disease" and the ails of our hearts.
Now Playing: Radiolab

Insomnia Line
Coronasomnia is a not-so-surprising side-effect of the global pandemic. More and more of us are having trouble falling asleep. We wanted to find a way to get inside that nighttime world, to see why people are awake and what they are thinking about. So what'd Radiolab decide to do?  Open up the phone lines and talk to you. We created an insomnia hotline and on this week's experimental episode, we stayed up all night, taking hundreds of calls, spilling secrets, and at long last, watching the sunrise peek through.   This episode was produced by Lulu Miller with Rachael Cusick, Tracie Hunte, Tobin Low, Sarah Qari, Molly Webster, Pat Walters, Shima Oliaee, and Jonny Moens. Want more Radiolab in your life? Sign up for our newsletter! We share our latest favorites: articles, tv shows, funny Youtube videos, chocolate chip cookie recipes, and more. Support Radiolab by becoming a member today at Radiolab.org/donate.