Nav: Home

Wrapping up hydrophobic hydration

June 29, 2020

In water, hydrophobic molecules are surrounded by a two different water populations: the inner shell forms a two-dimensional network of water molecules. The next layer is formed by a second water population that is almost bulk like but forms slightly stronger hydrogen bonds to the bulk water. The assumption to date was that tetrahedral, "ice-like" water dominate in the innermost hydration shell of hydrophobic molecules. The opposite is the case. These new findings were published by the team headed by Professor Martina Havenith, Chair of Physical Chemistry II and Speaker of the Ruhr Explores Solvation Cluster of Excellence at Ruhr-Universität Bochum (RUB) in The Journal of Physical Chemistry Letters on 18 June 2020.

Insights by THz spectroscopy and simulations

In their study, the researchers investigated the hydrogen bond network around the hydrophobic solvated alcohol tert-butanol, as researchers use alcohols as a prototype models for hydrophobic molecules. The team combined results from terahertz (THz) spectroscopy and simulations.

In THz spectroscopy, researchers measure the absorption of THz radiation in a sample. The absorption spectrum provides a fingerprint of the water network.

A thin layer

In their study they obtained a detailed picture of the water layers surrounding the molecule. "We refer to the innermost layer as 'HB-wrap', where HB stands for water hydrogen bond," explains Martina Havenith. The top layer is called 'HB-hydration2bulk' as it described the interface to the bulk water. Combined, both layers of the coating are sometimes no thicker than a single layer of water molecules. "Occasionally, a single water molecule may be part of both layers," says Havenith.

Inner layer is longer stable

When the temperature is increased, the outer layer melts first, the HP-wrap layer remains longer intact. "The inner layer has also less freedom to form distinct configurations due to the hydrophobicity of the solute," elaborates the researcher. "As individual water molecules must always turn away from the alcohol, they form a two-dimensional, loose network." Water molecules in the outer layer have more freedom to move and therefore also more possibilities to connect with other water molecules; researchers refer to this phenomenon as greater entropy.

This type of interaction is relevant for the folding processes of proteins as well as biomolecular recognition between a drug and its target molecule. Understanding the role of water plays a crucial role in the process.
-end-
Funding

The study was funded by the German Research Foundation (DFG) as part of the Ruhr Explores Solvation Cluster of Excellence, funding code EXC 2033-390677874-Resolv, by the German-French Dynawin-Grant 14-CE35-0011-01 by Agence national de la recherche and DFG, and by Genci-France-Grant 072484 (Cines/Idris/TGCC). Martina Havenith is funded by an Advanced Grant des European Research Council, grant number 695437.

Original publication

Valeria Conti Nibali, Simone Pezzotti, Federico Sebastiani, Daria Ruth Galimberti, Gerhard Schwaab, Matthias Heyden, Marie-Pierre Gaigeot, Martina Havenith: Wrapping up hydrophobic hydration: locality matters, in Physical Chemistry Letters, 2020, DOI: 10.1021/acs.jpclett.0c00846

Press contact

Prof. Dr. Martina Havenith
Physical Chemistry II
Faculty of Chemistry and Biochemistry
Ruhr-Universität Bochum
Germany
Phone: +49 234 32 28249
Email: pc2office@rub.de

Ruhr-University Bochum

Related Spectroscopy Articles:

A new horizon for vibrational circular dichroism spectroscopy
(1) The development of solid state and time-step VCD methods opened a new horizon to reveal the mechanism of chirality amplification from microscopic to supramolecular scales.
Unraveling the optical parameters: New method to optimize plasmon enhanced spectroscopy
Plasmon enhanced spectroscopies allow to reach single molecule sensitivity and a lateral resolution even down to sub-molecular resolution.
Nanoscale spectroscopy review showcases a bright future
A new review authored by international leaders in their field, and published in Nature, focuses on the luminescent nanoparticles at the heart of many advances and the opportunities and challenges for these technologies to reach their full potential.
Researchers combine advanced spectroscopy technique with video-rate imaging
For the first time, researchers have used an advanced analytical technique known as dual-comb spectroscopy to rapidly acquire extremely detailed hyperspectral images.
Quantum logic spectroscopy unlocks potential of highly charged ions
Scientists from the PTB and the Max Planck Institute for Nuclear Physics (MPIK), both Germany, have carried out pioneering optical measurements of highly charged ions with unprecedented precision.
Spectroscopy: A fine sense for molecules
Scientists at the Laboratory for Attosecond Physics have developed a unique laser technology for the analysis of the molecular composition of biological samples.
Fluorescence spectroscopy helps to evaluate meat quality
Scientists of Sechenov University jointly with their colleagues from Australia proposed a new, quicker and cheaper way to assess meat quality.
Single-particle spectroscopy of CsPbBr3 perovskite reveals the origin low electrolumine
Researchers from Tokyo Institute of Technology (Tokyo Tech) used the method of single-particle spectroscopy to study electroluminescence in light-emitting devices.
'Resonance' raman spectroscopy with 1-nm resolution
Tip-enhanced Raman spectroscopy resolved 'resonance' Raman scattering with 1-nm resolution in ultrathin zinc oxide films epitaxially grown on a single-crystal silver surface.
Improved functional near infrared spectroscopy enables enhanced brain imaging
In an article published in the peer-reviewed SPIE publication Neurophotonics, 'High density functional diffuse optical tomography based on frequency domain measurements improves image quality and spatial resolution,' researchers demonstrate critical improvements to functional Near Infrared Spectroscopy (fNIRS)-based optical imaging in the brain.
More Spectroscopy News and Spectroscopy Current Events

Trending Science News

Current Coronavirus (COVID-19) News

Top Science Podcasts

We have hand picked the top science podcasts of 2020.
Now Playing: TED Radio Hour

Making Amends
What makes a true apology? What does it mean to make amends for past mistakes? This hour, TED speakers explore how repairing the wrongs of the past is the first step toward healing for the future. Guests include historian and preservationist Brent Leggs, law professor Martha Minow, librarian Dawn Wacek, and playwright V (formerly Eve Ensler).
Now Playing: Science for the People

#566 Is Your Gut Leaking?
This week we're busting the human gut wide open with Dr. Alessio Fasano from the Center for Celiac Research and Treatment at Massachusetts General Hospital. Join host Anika Hazra for our discussion separating fact from fiction on the controversial topic of leaky gut syndrome. We cover everything from what causes a leaky gut to interpreting the results of a gut microbiome test! Related links: Center for Celiac Research and Treatment website and their YouTube channel
Now Playing: Radiolab

The Flag and the Fury
How do you actually make change in the world? For 126 years, Mississippi has had the Confederate battle flag on their state flag, and they were the last state in the nation where that emblem remained "officially" flying.  A few days ago, that flag came down. A few days before that, it coming down would have seemed impossible. We dive into the story behind this de-flagging: a journey involving a clash of histories, designs, families, and even cheerleading. This show is a collaboration with OSM Audio. Kiese Laymon's memoir Heavy is here. And the Hospitality Flag webpage is here.