Nav: Home

Engineers use 'DNA origami' to identify vaccine design rules

June 29, 2020

CAMBRIDGE, MA -- By folding DNA into a virus-like structure, MIT researchers have designed HIV-like particles that provoke a strong immune response from human immune cells grown in a lab dish. Such particles might eventually be used as an HIV vaccine.

The DNA particles, which closely mimic the size and shape of viruses, are coated with HIV proteins, or antigens, arranged in precise patterns designed to provoke a strong immune response. The researchers are now working on adapting this approach to develop a potential vaccine for SARS-CoV-2, and they anticipate it could work for a wide variety of viral diseases.

"The rough design rules that are starting to come out of this work should be generically applicable across disease antigens and diseases," says Darrell Irvine, who is the Underwood-Prescott Professor with appointments in the departments of Biological Engineering and Materials Science and Engineering; an associate director of MIT's Koch Institute for Integrative Cancer Research; and a member of the Ragon Institute of MGH, MIT, and Harvard.

Irvine and Mark Bathe, an MIT professor of biological engineering and an associate member of the Broad Institute of MIT and Harvard, are the senior authors of the study, which appears today in Nature Nanotechnology. The paper's lead authors are former MIT postdocs Rémi Veneziano and Tyson Moyer.

DNA design

Because DNA molecules are highly programmable, scientists have been working since the 1980s on methods to design DNA molecules that could be used for drug delivery and many other applications, most recently using a technique called DNA origami that was invented in 2006 by Paul Rothemund of Caltech.

In 2016, Bathe's lab developed an algorithm that can automatically design and build arbitrary three-dimensional virus-like shapes using DNA origami. This method offers precise control over the structure of synthetic DNA, allowing researchers to attach a variety of molecules, such as viral antigens, at specific locations.

"The DNA structure is like a pegboard where the antigens can be attached at any position," Bathe says. "These virus-like particles have now enabled us to reveal fundamental molecular principles of immune cell recognition for the first time."

Natural viruses are nanoparticles with antigens arrayed on the particle surface, and it is thought that the immune system (especially B cells) has evolved to efficiently recognize such particulate antigens. Vaccines are now being developed to mimic natural viral structures, and such nanoparticle vaccines are believed to be very effective at producing a B cell immune response because they are the right size to be carried to the lymphatic vessels, which send them directly to B cells waiting in the lymph nodes. The particles are also the right size to interact with B cells and can present a dense array of viral particles.

However, determining the right particle size, spacing between antigens, and number of antigens per particle to optimally stimulate B cells (which bind to target antigens through their B cell receptors) has been a challenge. Bathe and Irvine set out to use these DNA scaffolds to mimic such viral and vaccine particle structures, in hopes of discovering the best particle designs for B cell activation.

"There is a lot of interest in the use of virus-like particle structures, where you take a vaccine antigen and array it on the surface of a particle, to drive optimal B-cell responses," Irvine says. "However, the rules for how to design that display are really not well-understood."

Other researchers have tried to create subunit vaccines using other kinds of synthetic particles, such as polymers, liposomes, or self-assembling proteins, but with those materials, it is not possible to control the placement of viral proteins as precisely as with DNA origami.

For this study, the researchers designed icosahedral particles with a similar size and shape as a typical virus. They attached an engineered HIV antigen related to the gp120 protein to the scaffold at a variety of distances and densities. To their surprise, they found that the vaccines that produced the strongest response B cell responses were not necessarily those that packed the antigens as closely as possible on the scaffold surface.

"It is often assumed that the higher the antigen density, the better, with the idea that bringing B cell receptors as close together as possible is what drives signaling. However, the experimental result, which was very clear, was that actually the closest possible spacing we could make was not the best. And, and as you widen the distance between two antigens, signaling increased," Irvine says.

The findings from this study have the potential to guide HIV vaccine development, as the HIV antigen used in these studies is currently being tested in a clinical trial in humans, using a protein nanoparticle scaffold.

Based on their data, the MIT researchers worked with Jayajit Das, a professor of immunology and microbiology at Ohio State University, to develop a model to explain why greater distances between antigens produce better results. When antigens bind to receptors on the surface of B cells, the activated receptors crosslink with each other inside the cell, enhancing their response. However, the model suggests that if the antigens are too close together, this response is diminished.

Beyond HIV

In recent months, Bathe's lab has created a variant of this vaccine with the Aaron Schmidt and Daniel Lingwood labs at the Ragon Institute, in which they swapped out the HIV antigens for a protein found on the surface of the SARS-CoV-2 virus. They are now testing whether this vaccine will produce an effective response against the coronavirus SARS-CoV-2 in isolated B cells, and in mice.

"Our platform technology allows you to easily swap out different subunit antigens and peptides from different types of viruses to test whether they may potentially be functional as vaccines," Bathe says.

Because this approach allows for antigens from different viruses to be carried on the same DNA scaffold, it could be possible to design variants that target multiple types of coronaviruses, including past and potentially future variants that may emerge, the researchers say.
-end-
Bathe was recently awarded a grant from the Fast Grants Covid-19 fund to develop their SARS-CoV-2 vaccine. The HIV research presented in the Nature Nanotechnology paper was funded by the Human Frontier Science Program, the U.S. Office of Naval Research, the U.S. Army Research Office through MIT's Institute for Soldier Nanotechnologies, the Ragon Institute, and the U.S. National Institutes of Health.

Massachusetts Institute of Technology

Related Vaccines Articles:

Better vaccines are in our blood
Red blood cells don't just shuttle oxygen from our lungs to our organs: they also help the body fight off infections by capturing pathogens in the blood and presenting them to immune cells in the spleen.
Challenges in evaluating SARS-CoV-2 vaccines
With more than 140 SARS-CoV-2 vaccines in development, the race is on for a successful candidate to help prevent COVID-19.
Designing vaccines from artificial proteins
EPFL scientists have developed a new computational approach to create artificial proteins, which showed promising results in vivo as functional vaccines.
Misinformation on vaccines readily available online
Parents researching childhood vaccinations online are likely to encounter significant levels of negative information, researchers at the University of Otago, Wellington, have found.
Battle with the cancer: New avenues from childhood vaccines
A new research from the University of Helsinki showed for the first time how the pre-immunization acquired through common childhood vaccines can be used to enhance therapeutic cancer treatment.
Personalized cancer vaccines
The only therapeutic cancer vaccine available on the market has so far showed very limited efficacy in clinical trials.
Doubts raised about effectiveness of HPV vaccines
A new analysis of the clinical trials of HPV vaccines to prevent cervical cancer raises doubts about the vaccines' effectiveness.
Egg-based flu vaccines: Not all they're cracked up to be?
Flu season is underway in the Northern Hemisphere, sickening millions of people and in rare cases, causing hospitalization or death.
You're probably not allergic to vaccines
Five facts about allergies to vaccines, pulled together by two McMaster University physicians.
Micromotors deliver oral vaccines
Vaccines have saved millions of lives, but nobody likes getting a shot.
More Vaccines News and Vaccines Current Events

Trending Science News

Current Coronavirus (COVID-19) News

Top Science Podcasts

We have hand picked the top science podcasts of 2020.
Now Playing: TED Radio Hour

Listen Again: The Power Of Spaces
How do spaces shape the human experience? In what ways do our rooms, homes, and buildings give us meaning and purpose? This hour, TED speakers explore the power of the spaces we make and inhabit. Guests include architect Michael Murphy, musician David Byrne, artist Es Devlin, and architect Siamak Hariri.
Now Playing: Science for the People

#576 Science Communication in Creative Places
When you think of science communication, you might think of TED talks or museum talks or video talks, or... people giving lectures. It's a lot of people talking. But there's more to sci comm than that. This week host Bethany Brookshire talks to three people who have looked at science communication in places you might not expect it. We'll speak with Mauna Dasari, a graduate student at Notre Dame, about making mammals into a March Madness match. We'll talk with Sarah Garner, director of the Pathologists Assistant Program at Tulane University School of Medicine, who takes pathology instruction out of...
Now Playing: Radiolab

What If?
There's plenty of speculation about what Donald Trump might do in the wake of the election. Would he dispute the results if he loses? Would he simply refuse to leave office, or even try to use the military to maintain control? Last summer, Rosa Brooks got together a team of experts and political operatives from both sides of the aisle to ask a slightly different question. Rather than arguing about whether he'd do those things, they dug into what exactly would happen if he did. Part war game part choose your own adventure, Rosa's Transition Integrity Project doesn't give us any predictions, and it isn't a referendum on Trump. Instead, it's a deeply illuminating stress test on our laws, our institutions, and on the commitment to democracy written into the constitution. This episode was reported by Bethel Habte, with help from Tracie Hunte, and produced by Bethel Habte. Jeremy Bloom provided original music. Support Radiolab by becoming a member today at Radiolab.org/donate.     You can read The Transition Integrity Project's report here.