Nav: Home

Faster processing makes cutting-edge fluorescence microscopy more accessible

June 29, 2020

Scientists have developed new image processing techniques for microscopes that can reduce post-processing time up to several thousand-fold. The researchers are from the National Institutes of Health with collaborators at the University of Chicago and Zhejiang University, China.

In a paper published in Nature Biotechnology, Hari Shroff, Ph.D., chief of laboratory on High Resolution Optical Imaging at the National Institute of Biomedical Imaging and Bioengineering (NIBIB), describes new techniques that can significantly reduce the time needed to process the highly complex images that are created by the most cutting-edge microscopes. Such microscopes are often used to capture blood and brain cells moving through fish, visualize the neural development of worm embryos, and pinpoint individual organelles within entire organs.

As microscopes continue to get better, creating higher resolution images faster, researchers are finding they have more data than time to process it. While the videos themselves can be captured in minutes, the images could be terabytes in size and require weeks or, in some cases, months of processing time to be useable.

One reason it takes so long is that the videos often capture tiny objects that are blurred by the microscope. Such blurring can be reduced by a procedure called deconvolution, but this procedure requires a lot of computing power and time.

A second issue is that many of the microscopes in use today take multiple views of the same organism or cell. Those images need to be positioned correctly and then combined to make 3D images and video. Creating high resolution images from the raw data takes a significant amount of computer processing. And so, while the microscopes have developed to provide researchers with increasingly complex, high resolution images, computing power has limited what techniques are practical for researchers to use--since they know that the majority of the data they collect will go unused.

The first thing Shroff's lab and his collaborators attempted to do was modify the deconvolution algorithm that is used by many researchers, so it would run faster. This approach was originally proposed for other areas of medical imaging such as computed tomography (CT); however, this is the first time it was successfully adapted for use with fluorescence microscopy. Fluorescence microscopy uses dyes to improve contrast in the specimen, allowing researchers to focus on specific parts of a sample and see how different elements interact with each other.

Second, they reduced the time needed to position and stitch together multiple views of a sample. A key part of this advance relied on a process called parallelization. It is an approach that is sometimes used in supercomputing where instead of processing each individual function one after another, the job is broken up into smaller tasks that can be analyzed concurrently. It is like asking thousands of people to each solve one math problem simultaneously instead of asking one person to solve thousands of problems.

Finally, the researchers showed that they could further reduce the time it takes to process the data by using a neural network, a kind of artificial intelligence (AI). AI is increasingly being used to assist imaging processing and diagnoses. In this case, Shroff and his team trained the neural network to produce cleaner and higher resolution images much more quickly than would be possible otherwise.

"Acquiring modern imaging data is a bit like drinking from a firehose," said Shroff. "These methods help us obtain valuable biological information faster, which is essential, given the massive amount of data that can be produced by these microscopes."

These advances expand the use of existing technology, including allowing for imaging of thick samples that produce huge amounts of image data when examined with fluorescence microscopes. The advances are also essential for the use of a growing number of 'computational microscopes' in which the post-processing of unintelligible raw data is an essential step in producing the final high-resolution image. Shroff and his collaborators hope that they will help researchers with approaches they would not have thought to try, due to how labor intensive it would otherwise be to create meaningful images.
-end-
NIBIB's mission is to improve health by leading the development and accelerating the application of biomedical technologies. The Institute is committed to integrating the physical and engineering sciences with the life sciences to advance basic research and medical care. NIBIB supports emerging technology research and development within its internal laboratories and through grants, collaborations, and training. More information is available at the NIBIB website: https://www.nibib.nih.gov.

The National Institutes of Health, the nation's medical research agency, includes 27 Institutes and Centers and is a component of the U.S. Department of Health and Human Services. NIH is the primary federal agency conducting and supporting basic, clinical, and translational medical research, and is investigating the causes, treatments, and cures for both common and rare diseases. For more information about NIH and its programs, visit https://www.nih.gov.

NIH/National Institute of Biomedical Imaging & Bioengineering

Related Artificial Intelligence Articles:

A hidden history of artificial intelligence in primary care
Artificial intelligence methods are being utilized in radiology, cardiology and other medical specialty fields to quickly and accurately process large quantities of health data to improve the diagnostic and treatment power of health care teams.
Identifying light sources using artificial intelligence
Identifying sources of light plays an important role in the development of many photonic technologies, such as lidar, remote sensing, and microscopy.
Artificial intelligence could serve as backup to radiologists' eyes
Deploying artificial intelligence could help radiologists to more accurately classify lung diseases.
Reducing the carbon footprint of artificial intelligence
MIT system cuts the energy required for training and running neural networks.
Researchers rebuild the bridge between neuroscience and artificial intelligence
In an article in the journal Scientific Reports, researchers reveal that they have successfully rebuilt the bridge between experimental neuroscience and advanced artificial intelligence learning algorithms.
Artificial intelligence can help some businesses but may not work for others
The temptation for businesses to use artificial intelligence and other technology to improve performance, drive down labor costs, and better the bottom line is understandable.
Artificial intelligence could help predict future diabetes cases
A type of artificial intelligence called machine learning can help predict which patients will develop diabetes, according to an ENDO 2020 abstract that will be published in a special supplemental section of the Journal of the Endocrine Society.
Artificial intelligence for very young brains
Montreal's CHU Sainte-Justine children's hospital and the ÉTS engineering school pool their expertise to develop an innovative new technology for the segmentation of neonatal brain images.
Putting artificial intelligence to work in the lab
An Australian-German collaboration has demonstrated fully-autonomous SPM operation, applying artificial intelligence and deep learning to remove the need for constant human supervision.
Composing new proteins with artificial intelligence
Scientists have long studied how to improve proteins or design new ones.
More Artificial Intelligence News and Artificial Intelligence Current Events

Trending Science News

Current Coronavirus (COVID-19) News

Top Science Podcasts

We have hand picked the top science podcasts of 2020.
Now Playing: TED Radio Hour

Listen Again: Meditations on Loneliness
Original broadcast date: April 24, 2020. We're a social species now living in isolation. But loneliness was a problem well before this era of social distancing. This hour, TED speakers explore how we can live and make peace with loneliness. Guests on the show include author and illustrator Jonny Sun, psychologist Susan Pinker, architect Grace Kim, and writer Suleika Jaouad.
Now Playing: Science for the People

#565 The Great Wide Indoors
We're all spending a bit more time indoors this summer than we probably figured. But did you ever stop to think about why the places we live and work as designed the way they are? And how they could be designed better? We're talking with Emily Anthes about her new book "The Great Indoors: The Surprising Science of how Buildings Shape our Behavior, Health and Happiness".
Now Playing: Radiolab

The Third. A TED Talk.
Jad gives a TED talk about his life as a journalist and how Radiolab has evolved over the years. Here's how TED described it:How do you end a story? Host of Radiolab Jad Abumrad tells how his search for an answer led him home to the mountains of Tennessee, where he met an unexpected teacher: Dolly Parton.Jad Nicholas Abumrad is a Lebanese-American radio host, composer and producer. He is the founder of the syndicated public radio program Radiolab, which is broadcast on over 600 radio stations nationwide and is downloaded more than 120 million times a year as a podcast. He also created More Perfect, a podcast that tells the stories behind the Supreme Court's most famous decisions. And most recently, Dolly Parton's America, a nine-episode podcast exploring the life and times of the iconic country music star. Abumrad has received three Peabody Awards and was named a MacArthur Fellow in 2011.