Nav: Home

New Zealand's ancient monster penguins had northern hemisphere doppelgangers

June 29, 2020

New Zealand's monster penguins that lived 62 million years ago had doppelgangers in Japan, the USA and Canada, a study published today in the Journal of Zoological Systematics and Evolutionary Research has found.

Scientists have identified striking similarities between the penguins' fossilised bones and those of a group of much younger Northern Hemisphere birds, the plotopterids.

These similarities suggest plotopterids and ancient penguins looked very similar and might help scientists understand how birds started using their wings to swim instead of fly.

Around 62 million years ago, the earliest known penguins swam in tropical seas that almost submerged the land that is now New Zealand. Palaeontologists have found the fossilised bones of these ancient waddlers at Waipara, North Canterbury. They have identified nine different species, ranging in size from small penguins, the size of today's Yellow-Eyed Penguin, to 1.6 metre-high monsters.

Plotopterids developed in the Northern Hemisphere much later than penguins, with the first species appearing between 37 and 34 million years ago. Their fossils have been found at a number of sites in North America and Japan. Like penguins, they used their flipper-like wings to swim through the sea. Unlike penguins, which have survived into the modern era, the last plotopterid species became extinct around 25 million years ago.

The scientists - Dr Gerald Mayr of the Senckenberg Research Institute and Natural History Museum, Frankfurt; James Goedert of the Burke Museum of Natural History and Culture and University of Washington, USA; and Canterbury Museum Curators Dr Paul Scofield and Dr Vanesa De Pietri - compared the fossilised bones of plotopterids with fossil specimens of the giant penguin species Waimanu, Muriwaimanu and Sequiwaimanu from Canterbury Museum's collection.

They found plotopterids and the ancient penguins had similar long beaks with slit-like nostrils, similar chest and shoulder bones, and similar wings. These similarities suggest both groups of birds were strong swimmers that used their wings to propel them deep underwater in search of food.

Some species of both groups could grow to huge sizes. The largest known plotopterids were over 2 metres long, while some of the giant penguins were up to 1.6 metres tall.

Despite sharing a number of physical features with penguins both ancient and modern, plotopterids are more closely related to boobies, gannets and cormorants than they are to penguins.

"What's remarkable about all this is that plotopterids and ancient penguins evolved these shared features independently," says Dr De Pietri. "This is an example of what we call convergent evolution, when distantly related organisms develop similar morphological traits under similar environmental conditions."

Dr Scofield says some large plotopterid species would have looked very similar to the ancient penguins. "These birds evolved in different hemispheres, millions of years apart, but from a distance you would be hard pressed to tell them apart," he says. "Plotopterids looked like penguins, they swam like penguins, they probably ate like penguins - but they weren't penguins."

Dr Mayr says the parallels in the evolution of the bird groups hint at an explanation for why birds developed the ability to swim with their wings.

"Wing-propelled diving is quite rare among birds; most swimming birds use their feet. We think both penguins and plotodopterids had flying ancestors that would plunge from the air into the water in search of food. Over time these ancestor species got better at swimming and worse at flying."

Fossils from New Zealand's giant penguins, including Waimanu and Sequiwaimanu are currently on display alongside life-sized models of the birds in Canterbury Museum's exhibition Ancient New Zealand: Squawkzilla and the Giants, extended until 16 August 2020.
-end-
Comparative osteology of the penguin-like mid Cenozoic Plotopteridae and the earliest true fossil penguins, with comment on the origins of wing-propelled diving, by Gerald Mayr, James L Goedert, Vanesa De Pietri and R Paul Scofield is published in the Journal of Zoological Systematics and Evolutionary Research. DOI after publication: 10.1111/jzs.12400

This research was partly supported by the Royal Society of New Zealand's Marsden Fund.

Canterbury Museum

Related Evolution Articles:

A timeline on the evolution of reptiles
A statistical analysis of that vast database is helping scientists better understand the evolution of these cold-blooded vertebrates by contradicting a widely held theory that major transitions in evolution always happened in big, quick (geologically speaking) bursts, triggered by major environmental shifts.
Looking at evolution's genealogy from home
Evolution leaves its traces in particular in genomes. A team headed by Dr.
How boundaries become bridges in evolution
The mechanisms that make organisms locally fit and those responsible for change are distinct and occur sequentially in evolution.
Genome evolution goes digital
Dr. Alan Herbert from InsideOutBio describes ground-breaking research in a paper published online by Royal Society Open Science.
Paleontology: Experiments in evolution
A new find from Patagonia sheds light on the evolution of large predatory dinosaurs.
A window into evolution
The C4 cycle supercharges photosynthesis and evolved independently more than 62 times.
Is evolution predictable?
An international team of scientists working with Heliconius butterflies at the Smithsonian Tropical Research Institute (STRI) in Panama was faced with a mystery: how do pairs of unrelated butterflies from Peru to Costa Rica evolve nearly the same wing-color patterns over and over again?
Predicting evolution
A new method of 're-barcoding' DNA allows scientists to track rapid evolution in yeast.
Insect evolution: Insect evolution
Scientists at Ludwig-Maximilians-Universitaet (LMU) in Munich have shown that the incidence of midge and fly larvae in amber is far higher than previously thought.
Evolution of aesthetic dentistry
One of the main goals of dental treatment is to mimic teeth and design smiles in the most natural and aesthetic manner, based on the individual and specific needs of the patient.
More Evolution News and Evolution Current Events

Trending Science News

Current Coronavirus (COVID-19) News

Top Science Podcasts

We have hand picked the top science podcasts of 2020.
Now Playing: TED Radio Hour

Listen Again: The Power Of Spaces
How do spaces shape the human experience? In what ways do our rooms, homes, and buildings give us meaning and purpose? This hour, TED speakers explore the power of the spaces we make and inhabit. Guests include architect Michael Murphy, musician David Byrne, artist Es Devlin, and architect Siamak Hariri.
Now Playing: Science for the People

#576 Science Communication in Creative Places
When you think of science communication, you might think of TED talks or museum talks or video talks, or... people giving lectures. It's a lot of people talking. But there's more to sci comm than that. This week host Bethany Brookshire talks to three people who have looked at science communication in places you might not expect it. We'll speak with Mauna Dasari, a graduate student at Notre Dame, about making mammals into a March Madness match. We'll talk with Sarah Garner, director of the Pathologists Assistant Program at Tulane University School of Medicine, who takes pathology instruction out of...
Now Playing: Radiolab

What If?
There's plenty of speculation about what Donald Trump might do in the wake of the election. Would he dispute the results if he loses? Would he simply refuse to leave office, or even try to use the military to maintain control? Last summer, Rosa Brooks got together a team of experts and political operatives from both sides of the aisle to ask a slightly different question. Rather than arguing about whether he'd do those things, they dug into what exactly would happen if he did. Part war game part choose your own adventure, Rosa's Transition Integrity Project doesn't give us any predictions, and it isn't a referendum on Trump. Instead, it's a deeply illuminating stress test on our laws, our institutions, and on the commitment to democracy written into the constitution. This episode was reported by Bethel Habte, with help from Tracie Hunte, and produced by Bethel Habte. Jeremy Bloom provided original music. Support Radiolab by becoming a member today at Radiolab.org/donate.     You can read The Transition Integrity Project's report here.