Understanding of relaxor ferroelectric properties could lead to many advances

June 29, 2020

A new fundamental understanding of polymeric relaxor ferroelectric behavior could lead to advances in flexible electronics, actuators and transducers, energy storage, piezoelectric sensors and electrocaloric cooling, according to a team of researchers at Penn State and North Carolina State.

Researchers have debated the theory behind the mechanism of relaxor ferroelectrics for more than 50 years, said Qing Wang, professor of materials science and engineering at Penn State. While relaxor ferroelectrics are well-recognized, fundamentally fascinating and technologically useful materials, a Nature article commented in 2006 that they were heterogeneous, hopeless messes.

Without a fundamental understanding of the mechanism, little progress has been made in designing new relaxor ferroelectric materials. The new understanding, which relies on both experiment and theoretical modeling, shows that relaxor ferroelectricity in polymers comes from chain conformation disorders induced by chirality. Chirality is a feature of many organic materials in which molecules are mirror images of each other, but not exactly the same. The relaxor mechanism in polymers is vastly different from the mechanism proposed for ceramics whose relaxor behavior originates from chemical disorders.

"Different from ferroelectrics, relaxors exhibit no long-range large ferroelectric domains but disordered local polar domains," Wang explained. "The research in relaxor polymeric materials has been challenging owing to the presence of multiple phases such as crystalline, amorphous and crystalline-amorphous interfacial area in polymers."

In energy storage capacitors, relaxors can deliver a much higher energy density than normal ferroelectrics, which have high ferroelectric loss that turns into waste heat. In addition, relaxors can generate larger strain under the applied electric fields and have a much better efficiency of energy conversion than normal ferroelectrics, which makes them preferred materials for actuators and sensors.

Penn State has a long history of discovery in ferroelectric materials. Qiming Zhang, professor of electrical engineering at Penn State, discovered the first relaxor ferroelectric polymer in 1998, when he used an electron beam to irradiate a ferroelectric polymer and found it had become a relaxor. Zhang along with Qing Wang also made seminal discoveries in the electrocaloric effect using relaxor polymers, which allows for solid state cooling without the use of noxious gases and uses much less energy than conventional refrigeration.

"The new understanding of relaxor behavior would open up unprecedented opportunities for us to design relaxor ferroelectric polymers for a range of energy storage and conversion applications," said Wang.
-end-
Their work, "Chirality-induced relaxor properties in ferroelectric polymers," appears today, June 29, in the journal Nature Materials. The lead author is Yang Liu, a postdoctoral scholar in Wang's group. Co-authors Wenhan Xu and Aziguli Haibibu are former graduate students in Wang's group. Zhubing Han is Wang's current graduate student. Bing Zhang is a graduate student in Professor J. Berholc's group at North Carolina State University, and Wenchang Lu is a research associate in Berholc's group.

The U.S. Air Force Office of Scientific Research and the U.S. Office of Naval Research funded this research. The National Science Foundation provided supercomputer time at the National Center for Supercomputing Applications.

Penn State

Related Behavior Articles from Brightsurf:

Variety in the migratory behavior of blackcaps
The birds have variable migration strategies.

Fishing for a theory of emergent behavior
Researchers at the University of Tsukuba quantified the collective action of small schools of fish using information theory.

How synaptic changes translate to behavior changes
Learning changes behavior by altering many connections between brain cells in a variety of ways all at the same time, according to a study of sea slugs recently published in JNeurosci.

I won't have what he's having: The brain and socially motivated behavior
Monkeys devalue rewards when they anticipate that another monkey will get them instead.

Unlocking animal behavior through motion
Using physics to study different types of animal motion, such as burrowing worms or flying flocks, can reveal how animals behave in different settings.

AI to help monitor behavior
Algorithms based on artificial intelligence do better at supporting educational and clinical decision-making, according to a new study.

Increasing opportunities for sustainable behavior
To mitigate climate change and safeguard ecosystems, we need to make drastic changes in our consumption and transport behaviors.

Predicting a protein's behavior from its appearance
Researchers at EPFL have developed a new way to predict a protein's interactions with other proteins and biomolecules, and its biochemical activity, merely by observing its surface.

Spirituality affects the behavior of mortgagers
According to Olga Miroshnichenko, a Sc.D in Economics, and a Professor at the Department of Economics and Finance, Tyumen State University, morals affect the thinking of mortgage payers and help them avoid past due payments.

Asking if behavior can be changed on climate crisis
One of the more complex problems facing social psychologists today is whether any intervention can move people to change their behavior about climate change and protecting the environment for the sake of future generations.

Read More: Behavior News and Behavior Current Events
Brightsurf.com is a participant in the Amazon Services LLC Associates Program, an affiliate advertising program designed to provide a means for sites to earn advertising fees by advertising and linking to Amazon.com.