Nav: Home

New treatment for common form of muscular dystrophy shows promise in cells, animals

June 29, 2020

Researchers have designed a potential new treatment for one of the most common forms of muscular dystrophy, according to a new study published today in the Proceedings of the National Academy of Sciences.

Toshifumi Yokota, professor of medical genetics at the University of Alberta, led a team from Canada and the U.S. to create and test synthetic DNA-like molecules that interfere with the production of a toxic protein that destroys the muscles of people who have facioscapulohumeral muscular dystrophy (FSHD).

FSHD occurs in one in 8,000 people and causes progressive weakness in the muscles of the face, shoulders and limbs. Onset is usually in the teens or early adulthood. Some patients have trouble breathing; many use a wheelchair. All face lifelong disability.

"There is no cure for FSHD at the moment," said Yokota, who has devoted his career to searching for treatments for all forms of muscular dystrophy.

"This paper shows the potential for this new type of therapy and makes progress towards finding a treatment candidate."

There are dozens of types of muscular dystrophy, almost all involving different genetic mutations that lead to weak muscles. FSHD, the third most common form of muscular dystrophy, causes patients to produce the protein DUX4, which damages muscle cells and causes the cells to die.

"Our goal is to knock down the production of DUX4 so their muscle cells can survive," said Yokota.

His team designed the treatment molecules, technically known as locked nucleic acid (LNA) gapmer antisense oligonucleotides (AOs), or "gapmers" for short. They specifically target the location in the gene that causes DUX4 production.

The researchers tested the treatment in patient-derived cells in the laboratory and in mice.

"We used a very low concentration of the treatment and it knocked down more than 99 per cent of the DUX4 production, so this is extremely efficient," Yokota said.

The researchers found the muscle cells were larger and more functional after treatment.

Yokota noted that gapmer therapy has been developed for diseases such as inherited high cholesterol, Huntington's disease and even some cancers. None has yet been approved for muscle diseases such as muscular dystrophy.

Next steps for the research team include testing better delivery methods, studying safety and side-effects, and determining how long the drug's benefits last. The researchers have applied for a patent and are seeking a pharmaceutical company partner to conduct a human trial.

"We are not ready to start clinical trials but it's a significant first step towards future drug development," Yokota said.
-end-
The research was funded by The Friends of Garrett Cumming Research Fund, FSH Society, Muscular Dystrophy Canada, Stollery Children's Hospital Foundation through the Women and Children's Health Research Institute, Friends of FSH Research, FSHD Global Research Foundation, HM Toupin Neurological Science Research Fund, Canadian Institutes of Health Research, Canada Foundation for Innovation, and the Government of Alberta.

University of Alberta Faculty of Medicine & Dentistry

Related Muscular Dystrophy Articles:

Using CRISPR to find muscular dystrophy treatments
A study from Boston Children's Hospital used CRISPR-Cas9 to better understand facioscapulohumeral muscular dystrophy (FSHD) and explore potential treatments by systematically deleting every gene in the genome.
Duchenne muscular dystrophy diagnosis improved by simple accelerometers
Testing for Duchenne muscular dystrophy can require specialized equipment, invasive procedures and high expense, but measuring changes in muscle function and identifying compensatory walking gait could lead to earlier detection.
New therapy targets cause of adult-onset muscular dystrophy
The compound designed at Scripps Research, called Cugamycin, works by recognizing toxic RNA repeats and destroying the garbled gene transcript.
Gene therapy cassettes improved for muscular dystrophy
Experimental gene therapy cassettes for Duchenne muscular dystrophy have been modified to deliver better performance.
Discovery points to innovative new way to treat Duchenne muscular dystrophy
Researchers at The Ottawa Hospital and the University of Ottawa have discovered a new way to treat the loss of muscle function caused by Duchenne muscular dystrophy in animal models of the disease.
Extracellular RNA in urine may provide useful biomarkers for muscular dystrophy
Massachusetts General Hospital researchers have found that extracellular RNA in urine may be a source of biomarkers for the two most common forms of muscular dystrophy, noninvasively providing information about whether therapeutic drugs are having the desired effects on a molecular level.
Tamoxifen and raloxifene slow down the progression of muscular dystrophy
Steroids are currently the only available treatment to reduce the repetitive cycles of inflammation and disease progression associated with functional deterioration in patients with muscular dystrophy (MD).
Designed proteins to treat muscular dystrophy
The cell scaffolding holds muscle fibers together and protects them from damage.
Gene-editing alternative corrects Duchenne muscular dystrophy
Using the new gene-editing enzyme CRISPR-Cpf1, researchers at UT Southwestern Medical Center have successfully corrected Duchenne muscular dystrophy in human cells and mice in the lab.
GW researcher finds genetic cause of new type of muscular dystrophy
George Washington University & St. George's University of London research, published in The American Journal of Human Genetics, outlines a newly discovered genetic mutation associated with short stature, muscle weakness, intellectual disability, and cataracts, leading researchers to believe this is a new type of congenital muscular dystrophy.
More Muscular Dystrophy News and Muscular Dystrophy Current Events

Trending Science News

Current Coronavirus (COVID-19) News

Top Science Podcasts

We have hand picked the top science podcasts of 2020.
Now Playing: TED Radio Hour

Making Amends
What makes a true apology? What does it mean to make amends for past mistakes? This hour, TED speakers explore how repairing the wrongs of the past is the first step toward healing for the future. Guests include historian and preservationist Brent Leggs, law professor Martha Minow, librarian Dawn Wacek, and playwright V (formerly Eve Ensler).
Now Playing: Science for the People

#566 Is Your Gut Leaking?
This week we're busting the human gut wide open with Dr. Alessio Fasano from the Center for Celiac Research and Treatment at Massachusetts General Hospital. Join host Anika Hazra for our discussion separating fact from fiction on the controversial topic of leaky gut syndrome. We cover everything from what causes a leaky gut to interpreting the results of a gut microbiome test! Related links: Center for Celiac Research and Treatment website and their YouTube channel
Now Playing: Radiolab

The Flag and the Fury
How do you actually make change in the world? For 126 years, Mississippi has had the Confederate battle flag on their state flag, and they were the last state in the nation where that emblem remained "officially" flying.  A few days ago, that flag came down. A few days before that, it coming down would have seemed impossible. We dive into the story behind this de-flagging: a journey involving a clash of histories, designs, families, and even cheerleading. This show is a collaboration with OSM Audio. Kiese Laymon's memoir Heavy is here. And the Hospitality Flag webpage is here.