Proteins spur diabetic mice models to grow blood vessels, nerves

June 30, 2006

Salt Lake City -- University of Utah researchers have taken a potentially powerful new therapy for treating diabetes, peripheral vascular disease, and other illnesses out of the test tube and into animals by demonstrating it restores nerve and blood vessel growth in mice.

The research has particularly important implications for the estimated 21 million Americans with diabetes, a disease that damages both nerves and blood vessels.

The therapy involves netrins, a family of proteins that promotes nerve development. In a study to be published this week in the journal Science Express, the Utah researchers and colleagues from other universities showed netrins not only accelerated blood vessel growth in ischemic mice (those with constricted blood flow) but they also restored blood vessel and nerve growth in diabetic mice. Dean Y. Li, M.D., Ph.D., a cardiologist and associate professor of internal medicine at the University's School of Medicine, is the study's corresponding author.

"We now have a (growth) factor that attracts both blood vessels and nerves--that's why it's unique for diabetes," Li said. "This demonstrates that netrins are critical for development and may be important as a new therapy."

Li and fellow researchers from the University of Utah and Stanford already had shown Netrin-1, a member of the netrins family, promotes blood vessel growth in laboratory cultures. But, until now, it had not been demonstrated that netrins work in animals.

The researchers tested netrins and vascular endothelial growth factor (VEGF), a gene-based therapy in Phase 2 clinical trials, in mice. They used the same method to inject netrins and VEGF. In the mice whose blood circulation was decreased by peripheral vascular disease, the researchers found netrins and VEGF promoted blood vessel growth equally well. But in the diabetic mice, netrins proved markedly better at promoting blood vessel and nerve growth than VEGF, according to Li.

Already in Phase 2 clinical trials, VEGF may be available as a therapeutic gene therapy within five years. Gene therapy requires expertise that is available in only a few medical centers. The hope is that netrins could be more effective and may not have to be delivered as a gene therapy, making it available to a much larger group of patients, according to Li.

Proving netrins work in mice is a big step, but Li says it's only a start.

"We have to find a better way to deliver the therapy," he said.

A biopharmaceutical drug would make a good way to give the therapy. As for any drug, to develop and get a therapy approved could take years. If Netrins prove to be a viable therapy and resources are committed to drug development, a netrin-based therapy could be on the market in 10 years, Li said.

Netrins are one of four major classes of neural guidance cues, which induce axons or nerve fibers to extend in specific directions during development. In 2004, Li and his colleagues showed in laboratory cultures that in addition to promoting nerve growth, Netrin-1 also induced formation of blood vessels.
-end-
Li conducted the research in conjunction with the laboratories of Chi-Bin Chien, Ph.D., associate professor of neurobiology and anatomy at the University of Utah, and Douglas W. Losordo, of the Division of Cardiovascular Research at Tufts University. The co-first authors include Brent D. Wilson, M.D., a post-doctoral fellow, and Kye Won Park and Arminda Suli, graduate students at the University of Utah.

Li's research into netrin-based therapy for blood vessel and nerve growth is promising enough that he recently received a $750,000 grant from the Burroughs Wellcome Fund to continue his work. This grant is awarded each year to ten researchers nationwide whose science directly impact clinical medicine.

The American Heart Association also awarded him a $500,000 Established Investigator Award, for a total of $1.25 million to advance this research.

The University of Utah Health Sciences Center is internationally regarded for its research and clinical expertise in the health sciences. Through its School of Medicine, College of Pharmacy, College of Nursing, College of Health, and Eccles Institute of Human Genetics, the Health Sciences Center conducts pioneering research in human genetics, pharmaceutical drugs, cancer, and numerous other areas of medicine. The Health Sciences Center also is the major training ground for Utah's physicians, pharmacists, nurses, therapists, and other health-care professionals.

University of Utah Health Sciences

Related Diabetes Articles from Brightsurf:

New diabetes medication reduced heart event risk in those with diabetes and kidney disease
Sotagliflozin - a type of medication known as an SGLT2 inhibitor primarily prescribed for Type 2 diabetes - reduces the risk of adverse cardiovascular events for patients with diabetes and kidney disease.

Diabetes drug boosts survival in patients with type 2 diabetes and COVID-19 pneumonia
Sitagliptin, a drug to lower blood sugar in type 2 diabetes, also improves survival in diabetic patients hospitalized with COVID-19, suggests a multicenter observational study in Italy.

Making sense of diabetes
Throughout her 38-year nursing career, Laurel Despins has progressed from a bedside nurse to a clinical nurse specialist and has worked in medical, surgical and cardiac intensive care units.

Helping teens with type 1 diabetes improve diabetes control with MyDiaText
Adolescence is a difficult period of development, made more complex for those with Type 1 diabetes mellitus (T1DM).

Diabetes-in-a-dish model uncovers new insights into the cause of type 2 diabetes
Researchers have developed a novel 'disease-in-a-dish' model to study the basic molecular factors that lead to the development of type 2 diabetes, uncovering the potential existence of major signaling defects both inside and outside of the classical insulin signaling cascade, and providing new perspectives on the mechanisms behind insulin resistance in type 2 diabetes and possibly opportunities for the development of novel therapeutics for the disease.

Tele-diabetes to manage new-onset diabetes during COVID-19 pandemic
Two new case studies highlight the use of tele-diabetes to manage new-onset type 1 diabetes in an adult and an infant during the COVID-19 pandemic.

Genetic profile may predict type 2 diabetes risk among women with gestational diabetes
Women who go on to develop type 2 diabetes after having gestational, or pregnancy-related, diabetes are more likely to have particular genetic profiles, suggests an analysis by researchers at the National Institutes of Health and other institutions.

Maternal gestational diabetes linked to diabetes in children
Children and youth of mothers who had gestational diabetes during pregnancy are at increased risk of diabetes themselves, according to new research published in CMAJ (Canadian Medical Association Journal).

Two diabetes medications don't slow progression of type 2 diabetes in youth
In youth with impaired glucose tolerance or recent-onset type 2 diabetes, neither initial treatment with long-acting insulin followed by the drug metformin, nor metformin alone preserved the body's ability to make insulin, according to results published online June 25 in Diabetes Care.

People with diabetes visit the dentist less frequently despite link between diabetes, oral health
Adults with diabetes are less likely to visit the dentist than people with prediabetes or without diabetes, finds a new study led by researchers at NYU Rory Meyers College of Nursing and East Carolina University's Brody School of Medicine.

Read More: Diabetes News and Diabetes Current Events
Brightsurf.com is a participant in the Amazon Services LLC Associates Program, an affiliate advertising program designed to provide a means for sites to earn advertising fees by advertising and linking to Amazon.com.