Neuronal correlates of the set-size effect in monkey lateral intraparietal area

June 30, 2008

It is well known that the brain is limited in the amount of sensory information it can process at any given time. During an everyday task such as finding an object in a cluttered environment (known as visual search), observers take longer to find a target as the number of distractors increases. This well-known phenomenon implies that inputs from distractors interfere with the brain's ability to perceive the target at some stage (or stages) of neural processing. However, the loci and mechanisms of this interference are unknown. Visual information is processed in feature-selective areas that encode the physical properties of stimuli, and in higher-order areas that convey information about behavioral significance and help direct attention to individual stimuli. This week in PLoS Biology, Jacqueline Gottlieb and colleagues show how a higher-order parietal area relates to attention and eye movements. They found that parietal neurons selectively track the location of a search target during a difficult visual search task. However, parietal neuron firing rates decreased as distractors were added to the display. This decrease reduced the target-related response, which in turn correlated with the set-size related increase in reaction time. This suggests that distractors trigger competitive visuo-visual interactions that limit the brain's ability to find and focus on a task-relevant target.
-end-
Citation: Balan PF, Oristaglio J, Schneider DM, Gottlieb J (2008) Neuronal correlates of the set-size effect in monkey lateral intraparietal area. PLoS Biol 6(7): e158. doi:10.1371/ journal.pbio.0060158

PLEASE ADD THE LINK TO THE PUBLISHED ARTICLE IN ONLINE VERSIONS OF YOUR REPORT: http://biology.plosjournals.org/perlserv/?request=get-document&doi=10.1371/journal.pbio.0060158

PRESS ONLY PREVIEW OF THE ARTICLE: http://www.plos.org/press/plbi-06-07-gottlieb.pdf

CONTACT:
Jacqueline Gottlieb
Columbia University
Center for Neurobiology and Behavior and Department of Psychiatry
New York, NY 10032
+1-212-543-6931, ext. 500
+1-212-543-5816 (fax)
jg2141@columbia.edu

PLOS

Related Eye Movements Articles from Brightsurf:

Novel population of neurons identified that control binocular eye movements in 3D space
Researchers have discovered a previously undescribed population of neurons called saccade-vergence burst neurons that help control our eyes as they view in three-dimensional space.

Deep learning artificial intelligence keeps an eye on volcano movements
RADAR satellites can collect massive amounts of remote sensing data that can detect ground movements -- surface deformations -- at volcanoes in near real time.

A smart eye mask that tracks muscle movements to tell what 'caught your eye'
Integrating first-of-its-kind washable hydrogel electrodes with a pulse sensor, researchers from the University of Massachusetts Amherst have developed smart eyewear to track eye movement and cardiac data for physiological and psychological studies.

Vision scientists discover why people literally don't see eye to eye
We humans may not always see eye to eye on politics, religion, sports and other matters of debate.

Black women often ignored by social justice movements
Black women are often less likely to be associated with the concept of a 'typical woman' and are viewed as more similar to Black men than to white women, which may lead to some anti-racist and feminist movements failing to advocate for the rights of Black women, according to new research published by the American Psychological Association.

Sainsbury Wellcome Center researchers find mouse and human eye movements share important similarity
In a study published today in Current Biology, Arne Meyer, John O'Keefe and Jasper Poort used a lightweight eye-tracking system composed of miniature video cameras and motion sensors to record head and eye movements in mice without restricting movement or behavior.

Our eye movements help us retrieve memories, suggests a new Baycrest study
In a recent study, scientists at Baycrest's Rotman Research Institute (RRI) found that research participants moved their eyes to determine whether they had seen an image before, and that their eye movement patterns could predict mistakes in memory.

Protecting pipelines during land movements
Researchers at the University of Technology Sydney (UTS) have developed a cost-effective and practical method to protect pipelines and keep them operating during significant fault rupture incidents and large ground movements.

Microscopic eye movements vital for 20/20 vision
Visual acuity--the ability to discern letters, numbers, and objects from a distance--is essential for tasks including recognizing a friend across a room and driving.

Bern and Fribourg researchers identify neurons responsible for rapid eye movements/REM during sleep
Why do we move our eyes fast in the paradoxical sleep -- in that sleep phase, in which most dreams take place?

Read More: Eye Movements News and Eye Movements Current Events
Brightsurf.com is a participant in the Amazon Services LLC Associates Program, an affiliate advertising program designed to provide a means for sites to earn advertising fees by advertising and linking to Amazon.com.