Physicists create millimeter-sized 'Bohr atom'

June 30, 2008

HOUSTON -- June 30, 2008 -- Nearly a century after Danish physicist Niels Bohr offered his planet-like model of the hydrogen atom, a Rice University-led team of physicists has created giant, millimeter-sized atoms that resemble it more closely than any other experimental realization yet achieved.

The research is available online in Physical Review Letters.

Bohr offered the first successful theoretical model of the atom in 1913, suggesting that electrons traveled in orbits around the atom's nucleus like planets orbiting a star. Bohr's model led to a deeper understanding of both the chemical and optical properties of atoms and won him a Nobel Prize in 1922. But his notion of electrons traveling in discrete orbits was eventually displaced by quantum mechanics, which revealed that electrons don't have precise positions but are instead distributed in wave-like patterns.

"In a sufficiently large system, the quantum effects at the atomic scale can transition into the classical mechanics found in Bohr's model," said lead researcher Barry Dunning, Rice's Sam and Helen Worden Professor of Physics and Astronomy. "Using highly excited Rydberg atoms and a series of pulsed electric fields, we were able to manipulate the electron motion and create circular, planet-like states."

The team included members from Oak Ridge National Laboratory and Vienna University of Technology. Using lasers, the researchers excited potassium atoms to extremely high levels. Using a carefully tailored series of short electric pulses, the team was then able to coax the atoms into a precise configuration with one point-like, "localized" electron orbiting far from the nucleus. In fact, the atoms are true atomic giants, with diameters approaching one millimeter.

"Our measurements show that the electrons remain localized for several orbits and behave much as classical particles," Dunning said.

He said the work has potential applications in next-generation computers and in the study of classical and quantum chaos.
-end-
Co-authors include Rice graduate students Jeffery Mestayer and Brendan Wyker, Rice postdoctoral researcher Jim Lancaster, Oak Ridge National Laboratory's Carlos Reinhold and the Vienna University of Technology's Shuhei Yoshida and Joachim Burgdörfer. The research was supported by the National Science Foundation, the Robert A. Welch Foundation, the Department of Energy and the Austrian Science Fund.

Rice University

Related Rice Articles from Brightsurf:

C4 rice's first wobbly steps towards reality
An international long-term research collaboration aimed at creating high yielding and water use efficient rice varieties, has successfully installed part of the photosynthetic machinery from maize into rice.

Rice has many fathers but only two mothers
University of Queensland scientists studied more than 3000 rice genotypes and found diversity was inherited through two maternal genomes identified in all rice varieties.

Rice rolls out next-gen nanocars
Rice University researchers continue to advance the science of single-molecule machines with a new lineup of nanocars, in anticipation of the next international Nanocar Race in 2022.

3D camera earns its stripes at Rice
The Hyperspectral Stripe Projector captures spectroscopic and 3D imaging data for applications like machine vision, crop monitoring, self-driving cars and corrosion detection.

Climate change could increase rice yields
Research reveals how rice ratooning practices can help Japanese farmers increase rice yields.

Breeding new rice varieties will help farmers in Asia
New research shows enormous potential for developing improved short-duration rice varieties.

High-protein rice brings value, nutrition
A new advanced line of rice, with higher yield, is ready for final field testing prior to release.

Rice plants engineered to be better at photosynthesis make more rice
A new bioengineering approach for boosting photosynthesis in rice plants could increase grain yield by up to 27 percent, according to a study publishing January 10, 2019 in the journal Molecular Plant.

Can rice filter water from ag fields?
While it's an important part of our diets, new research shows that rice plants can be used in a different way, too: to clean runoff from farms before it gets into rivers, lakes, and streams.

Rice plants evolve to adapt to flooding
Although water is essential for plant growth, excessive amounts can waterlog and kill a plant.

Read More: Rice News and Rice Current Events
Brightsurf.com is a participant in the Amazon Services LLC Associates Program, an affiliate advertising program designed to provide a means for sites to earn advertising fees by advertising and linking to Amazon.com.