Caltech researchers show how active immune tolerance makes pregnancy possible

June 30, 2010

PASADENA, Calif.--The concept of pregnancy makes no sense--at least not from an immunological point of view. After all, a fetus, carrying half of its father's genome, is biologically distinct from its mother. The fetus is thus made of cells and tissues that are very much not "self"--and not-self is precisely what the immune system is meant to search out and destroy.

Women's bodies manage to ignore this contradiction in the vast majority of cases, making pregnancy possible. Similarly, scientists have generally paid little attention to this phenomenon--called "pregnancy tolerance"--and its biological details.

Now, a pair of scientists from the California Institute of Technology (Caltech) have shown that females actively produce a particular type of immune cell in response to specific fetal antigens--immune-stimulating proteins--and that this response allows pregnancy to continue without the fetus being rejected by the mother's body.

Their findings were detailed in a recent issue of the Proceedings of the National Academy of Sciences (PNAS).

"Our finding that specific T regulatory cells protect the mother is a step to learning how the mother avoids rejection of her fetus. This central biological mechanism is important for the health of both the fetus and the mother," says David Baltimore, Caltech's Robert Andrews Millikan Professor of Biology, recipient of the 1975 Nobel Prize in Physiology or Medicine, and the principal investigator on the research.

Scientists had long been "hinting around at the idea that the mother's immune system makes tolerance possible," notes paper coauthor Daniel Kahn, a visiting associate in biology at Caltech, and an assistant professor of maternal-fetal medicine at the University of California, Los Angeles (UCLA). What they didn't have were the details of this tolerance--or proof that it was immune-related.

Now they do. To pin down those details, the two scientists began looking at the immune system's T regulatory cells (Tregs) in a strain of inbred mice that are all genetically identical--except for one seemingly tiny detail. Male mice--including male fetuses--carry on their cells' surfaces a protein known as a "minor transplantation antigen." Female mice lack this antigen.

Under normal circumstances, this antigen's existence isn't a problem for the male fetuses because the pregnancy tolerance phenomenon kicks in and protects them from any maternal immune repercussions.

To demonstrate the role of Tregs, Baltimore and Kahn used a drug to selectively target and destroy the cells. If the Tregs were indeed the source of pregnancy tolerance, they reasoned, their destruction would give the immune system free rein to go after the antigen-laden fetuses.

"In this case," says Kahn, "we knew the only possible immune response would be against the males--that the males would be at risk."

Indeed they were. When Baltimore and Kahn looked at the offspring of mice who'd been treated with the toxin, they found that fewer of the male fetuses survived to birth; those males that did survive were of significantly lower birthweight, presumably because of the inflammation caused by the mother's immune response to that single antigen.

"These T cells are functioning in an antigen-specific manner," Kahn notes. "In other words, their function requires the presence of the specific fetal antigens."

In their studies of these animals, the scientists also found that pregnancy tolerance "develops actively as a consequence of pregnancy," says Kahn. "The mice are not born with it." Indeed, virgin mice showed no signs of these pregnancy-specific Treg cells. Conversely, the cells were found in larger numbers in those individual mice that had given birth to more male babies, with the level of Treg cells increasing with the number of male births.

The next step, Kahn adds, is to look at Tregs and their role in pregnancy tolerance in humans--a line of research that may lead to new insights into such pregnancy-related conditions as preeclampsia, in which high blood pressure and other symptoms develop in the second half of pregnancy. Preeclampsia is a major cause of maternal mortality around the world.

"There's a lot to be learned," he says. "Pregnancy is often ignored in research because it's usually successful, and because--from an immunologic standpoint--it has such complexity. Until now, it's been difficult to grab a handle on how the immunology of pregnancy really works."
-end-
The work described in the PNAS article, "Pregnancy induces a fetal antigen-specific maternal T regulatory cell response that contributes to tolerance," was supported in part by a research grant from the Skirball Foundation. Kahn is supported by the National Institutes of Health's Building Interdisciplinary Research Careers in Women's Health Center at UCLA.

Visit the Caltech Media Relations website at http://media.caltech.edu.

California Institute of Technology

Related Immune System Articles from Brightsurf:

How the immune system remembers viruses
For a person to acquire immunity to a disease, T cells must develop into memory cells after contact with the pathogen.

How does the immune system develop in the first days of life?
Researchers highlight the anti-inflammatory response taking place after birth and designed to shield the newborn from infection.

Memory training for the immune system
The immune system will memorize the pathogen after an infection and can therefore react promptly after reinfection with the same pathogen.

Immune system may have another job -- combatting depression
An inflammatory autoimmune response within the central nervous system similar to one linked to neurodegenerative diseases such as multiple sclerosis (MS) has also been found in the spinal fluid of healthy people, according to a new Yale-led study comparing immune system cells in the spinal fluid of MS patients and healthy subjects.

COVID-19: Immune system derails
Contrary to what has been generally assumed so far, a severe course of COVID-19 does not solely result in a strong immune reaction - rather, the immune response is caught in a continuous loop of activation and inhibition.

Immune cell steroids help tumours suppress the immune system, offering new drug targets
Tumours found to evade the immune system by telling immune cells to produce immunosuppressive steroids.

Immune system -- Knocked off balance
Instead of protecting us, the immune system can sometimes go awry, as in the case of autoimmune diseases and allergies.

Too much salt weakens the immune system
A high-salt diet is not only bad for one's blood pressure, but also for the immune system.

Parkinson's and the immune system
Mutations in the Parkin gene are a common cause of hereditary forms of Parkinson's disease.

How an immune system regulator shifts the balance of immune cells
Researchers have provided new insight on the role of cyclic AMP (cAMP) in regulating the immune response.

Read More: Immune System News and Immune System Current Events
Brightsurf.com is a participant in the Amazon Services LLC Associates Program, an affiliate advertising program designed to provide a means for sites to earn advertising fees by advertising and linking to Amazon.com.