Artificial enzyme mimics the natural detoxification mechanism in liver cells

June 30, 2014

Scientists at Johannes Gutenberg University Mainz in Germany have discovered that molybdenum trioxide nanoparticles oxidize sulfite to sulfate in liver cells in analogy to the enzyme sulfite oxidase. The functionalized Molybdenum trioxide nanoparticles can cross the cellular membrane and accumulate at the mitochondria, where they can recover the activity of sulfite oxidase.

Sulfite oxidase is a molybdenum containing enzyme located in the mitochondria of liver and kidney cells, which catalyzes the oxidation of sulfite to sulfate during the protein and lipid metabolism and therefore plays an important role in cellular detoxification processes. A lack of functional sulfite oxidase is a rare but fatal genetic disease causing neurological disorders, mental retardation, physical deformities as well as degradation of the brain, which finally leads to premature death. Various dietary or drug treatments for a sulfite oxidase deficiency have been tried with moderate success.

It was the fact that molybdenum oxide is incorporated in the enzymes active site that provided the inspiration for the approach now taken by the team of scientists working under the lead of Professor Wolfgang Tremel of the JGU Institute of Inorganic Chemistry and Analytical Chemistry as well as Dr. Dennis Strand and Professor Susanne Strand of the Department of Internal Medicine of the Mainz University Medical Center. The researchers hope that this study may lay the basis for a therapeutic application of molybdenum trioxide nanoparticles and therefore new possibilities to treat sulfite oxidase deficiency.

Lowered sulfite oxidase levels can cause health problems even for otherwise healthy persons. In addition, sulfites are used as preservatives in food, e.g., in red wine, grape juice, or pickles in a jar. People having low levels of the sulfite oxidase react with symptoms like fatigue, asthma, drop in blood sugar, or headache.

With their study the Mainz scientists enter scientifically uncharted territory, because so far there are just a few studies of enzymatically active nanoparticles. "It is indeed astonishing, that simple inorganic nanoparticles can mimic an enzymatic activity," said Ruben Ragg, first author of this study. In a previous work Professor Wolfgang Tremel and his team had shown that vanadium oxide nanowires contain an enzymatically induced antifouling activity that efficiently prevents ships from being infested by marine microorganisms. "It is a long-standing goal of chemistry to synthesize artificial enzymes that imitate the essential and general principles of natural enzymes," added Tremel. There is growing evidence that nanoparticles can act as enzyme mimics. Some nanomaterials were reported to exhibit enzyme-like activities, but the hallmark of enzyme chemistry would be to catalyze transformations in cells in the presence of other competing reactions. This is difficult to achieve, as it requires compatibility with other cellular reactions operating under similar conditions and rates. Therefore, artificial enzymes are not only useful for an understanding of the reaction mechanism of native enzymes but also for future applications as therapeutic agents.

At the same time, the use of molybdenum nanoparticles would have several benefits. "Molybdenum oxide particles are considerably cheaper and also more stable than genetically produced enzymes," added Dr. Filipe Natalio, cooperation partner from Martin Luther University of Halle-Wittenberg. Natalio is designing new materials that can mimic complex structures found in nature by bringing together a wide range expertise from material sciences to biology and chemistry. The next steps of the project will be to test if the enzyme activity of the nanoparticles can be retained in living organisms.

The research teams were supported by an interdisciplinary grant from the JGU Center for Natural Sciences and Medicine (NMFZ) and the Max Planck Graduate Center (MPGC).
-end-


Image:


http://www.uni-mainz.de/bilder_presse/09_inorg_chemistry_molybdenum_oxide_particles.jpg

Mode of action of molybdenum oxide nanoparticles: (a) treatment of sulfite oxidase deficient liver cells; (b) mitochondria are directly targeted and nanoparticles accumulate in close proximity to the membrane; (c) sulfite is oxidized to cellular innocuous sulfate.

Source: Tremel research group, JGU

Publication:

Ruben Ragg, et al.
Molybdenum Trioxide Nanoparticles with Intrinsic Sulfite Oxidase Activity
ACS Nano 2014, 8 (5), pp. 5182, 4 April 2014
DOI: 10.1021/nn501235j

Contact:

Professor Wolfgang Tremel
Institute of Inorganic Chemistry and Analytical Chemistry
Johannes Gutenberg University Mainz (JGU)
55099 Mainz, GERMANY
phone +49 6131 39-25135
fax +49 6131 39-25605
e-mail: tremel@uni-mainz.de
http://www.ak-tremel.chemie.uni-mainz.de/index.php

Dr. Dennis Strand, Professor Susanne Strand
Department of Internal Medicine
Mainz University Medical Center
Johannes Gutenberg University Mainz (JGU)
55131 Mainz, GERMANY
phone + 49 6131 17-9782
e-mail: dstrand@uni-mainz.de // sstrand@uni-mainz.de

Johannes Gutenberg Universitaet Mainz

Related Nanoparticles Articles from Brightsurf:

An ionic forcefield for nanoparticles
Nanoparticles are promising drug delivery tools but they struggle to get past the immune system's first line of defense: proteins in the blood serum that tag potential invaders.

Phytoplankton disturbed by nanoparticles
Products derived from nanotechnology are efficient and highly sought-after, yet their effects on the environment are still poorly understood.

How to get more cancer-fighting nanoparticles to where they are needed
University of Toronto Engineering researchers have discovered a dose threshold that greatly increases the delivery of cancer-fighting drugs into a tumour.

Nanoparticles: Acidic alert
Researchers of Ludwig-Maximilians-Universitaet (LMU) in Munich have synthesized nanoparticles that can be induced by a change in pH to release a deadly dose of ionized iron within cells.

3D reconstructions of individual nanoparticles
Want to find out how to design and build materials atom by atom?

Directing nanoparticles straight to tumors
Modern anticancer therapies aim to attack tumor cells while sparing healthy tissue.

Sweet nanoparticles trick kidney
Researchers engineer tiny particles with sugar molecules to prevent side effect in cancer therapy.

A megalibrary of nanoparticles
Using straightforward chemistry and a mix-and-match, modular strategy, researchers have developed a simple approach that could produce over 65,000 different types of complex nanoparticles.

Dialing up the heat on nanoparticles
Rapid progress in the field of metallic nanotechnology is sparking a science revolution that is likely to impact all areas of society, according to professor of physics Ventsislav Valev and his team at the University of Bath in the UK.

Illuminating the world of nanoparticles
Scientists at the Okinawa Institute of Science and Technology Graduate University (OIST) have developed a light-based device that can act as a biosensor, detecting biological substances in materials; for example, harmful pathogens in food samples.

Read More: Nanoparticles News and Nanoparticles Current Events
Brightsurf.com is a participant in the Amazon Services LLC Associates Program, an affiliate advertising program designed to provide a means for sites to earn advertising fees by advertising and linking to Amazon.com.