A new method to detect infrared energy using a nanoporous ZnO/n-Si photodetector

June 30, 2014

Experiments aimed at devising new types of photodetectors have been triggered by the increasing use of optoelectronic devices in personal electronics, cameras, medical equipment, computers and by the military. Professor Zhao Kun and co-researchers at the State Key Laboratory of Petroleum Resource and Prospecting, part of the China University of Petroleum in Beijing, have proposed a new type of infrared photodetector.

Photodetectors, which can convert photons to electrical signals, are used to observe and measure the wavelength or energy of light, including infrared light, which is beyond the visible spectrum. Many different types of photodetectors have been widely used in optoelectronic devices, such as digital cameras or night vision goggles. Scientists around the world are constantly exploring the potential to devise, or are actually developing, new generations of photodetectors that feature new configurations or new materials.

Zhao and colleagues state in a new study, "Double peaked decay of transient photovoltage in a nanoporous ZnO/n-Si photodetector," that this ZnO/n-Si structure has an application as a new, simple and low-cost photo-energy detector for an infrared pulsed laser. The paper was published in SCIENCE CHINA Physics, Mechanics & Astronomy.

Zinc oxide (ZnO) is a low-cost and environment-friendly semiconductor. It has a wide band gap (~3.37 eV) at room temperature, so that only ultraviolet light (with a wavelength less than 400 nm) can be absorbed effectively. In terms of photodetector applications, ZnO and ZnO-based devices are routinely studied as an ultraviolet light photosensor.

Yet researcher Zhao and his group now report that when ZnO is combined with n-type Si, an interesting photoresponse is observed under near infrared pulsed light irradiation. "In the present work, we propose a type of infrared photodetector based on a nanoporous ZnO/n-Si structure, which is synthesized by a simple sol-gel method," they state in the study. "Under illumination of one infrared laser pulse, this porous structure exhibits a double peak on a millisecond time scale in the decay of transient photovoltage."

As the structure was irradiated by a pulsed laser with a wavelength of 1064 nm, one laser pulse with energy of 0.072 mJ triggered two peaks: a higher photovoltaic (HPV) peak with an amplitude of ~235 mV and a succeeding lower photovoltaic (LPV) peak with an amplitude of ~13 mV. The time interval (t2-t1) was ~99.64 ms; t1 and t2 represent the corresponding time of the related transient photovoltaic peaks (as shown in Figure 1).

When the pulsed energy increased from 0.072 mJ to 0.332 mJ, the amplitude of the corresponding higher photovoltaic peaks increased from ~235 mV to ~275 mV. In contrast, the amplitude of the LPV peaks remained almost the same, that is, ~13 mV. The authors posited that this particular photoresponse of the nanoporous ZnO/n-Si structure originated from the synergy of the photoelectric effect and the photo-thermal excitation process.

Most importantly, the time interval between the double peaks of transient photovoltage is highly sensitive to slight changes in the energy of the laser pulse. When the irradiated pulsed energy is increased, the time interval (t2-t1) increases linearly.

This characteristic indicates that the nanoporous ZnO/n-Si structure has the potential to be developed into a new, inexpensive photodetector for an infrared pulsed laser.
-end-
This study received funding from the National Key Basic Research Program of China, the Specially Funded Program on National Key Scientific Instruments and Equipment Development, the Beijing National Science Foundation, and the Science Foundation of the China University of Petroleum.

See the article:

Liu H, Fu C, Zhao K., "Double-peaked decay of transient photovoltage in a nanoporous ZnO/n-Si photodetector" Sci China-Phys Mech Astron, 2014, 57 (6): 1201-1205. doi: 10.1007/s11433-014-5459-4 http://link.springer.com/article/10.1007%2Fs11433-014-5459-4

Science China Press is a leading publisher of scientific journals in China, and operates under the auspices of the Chinese Academy of Sciences. Science China Press presents to the world leading-edge advancements made by Chinese scientists across a spectrum of fields. http://www.scichina.com/

Science China Press

Related Ultraviolet Light Articles from Brightsurf:

NRL researchers evaluate ultraviolet sources, combat COVID-19
NRL researchers evaluated commercial ultraviolet (UV) sources for viral disinfection to combat COVID-19 on land and at sea, and established a dedicated UV characterization lab in five days.

Ultraviolet shines light on origins of the solar system
In the search to discover the origins of our solar system, an international team of researchers, including planetary scientist and cosmochemist James Lyons of Arizona State University, has compared the composition of the sun to the composition of the most ancient materials that formed in our solar system: refractory inclusions in unmetamorphosed meteorites.

New extreme ultraviolet facility opens for use
Researchers have established a novel high-frequency laser facility at the University of Tokyo.

Astronomers find the first galaxy whose ultraviolet luminosity is comparable to that of a quasar
An international scientific team, led by researchers at the Centre for Astrobiology (CAB, CSIC-INTA) and with participation by the Instituto de Astrofísica de Canarias (IAC), have found the galaxy BOSS-EUVLG1.

Comet Chury's ultraviolet aurora
On Earth, auroras, also called northern lights, have always fascinated people.

SwRI instruments aboard Rosetta help detect unexpected ultraviolet aurora at a comet
Data from Southwest Research Institute-led instruments aboard ESA's Rosetta spacecraft have helped reveal auroral emissions in the far ultraviolet around a comet for the first time.

Ultraviolet B exposure expands proenkephalin+ regulatory T cells with a healing function
Skin exposure to ultraviolet B (UVB) induces expansion of regulatory T (Treg) cells with immunosuppressive activity.

Ultraviolet communication to transform Army networks
Of ever-increasing concern for operating a tactical communications network is the possibility that a sophisticated adversary may detect friendly transmissions.

NASA's Maven observes martian night sky pulsing in ultraviolet light
Vast areas of the Martian night sky pulse in ultraviolet light, according to images from NASA's MAVEN spacecraft.

A new look at Mars' eerie, ultraviolet nighttime glow
An astronaut standing on Mars couldn't see the planet's ultraviolet ''nightglow.'' But this phenomenon could help scientists to better predict the churn of Mars' surprisingly complex atmosphere.

Read More: Ultraviolet Light News and Ultraviolet Light Current Events
Brightsurf.com is a participant in the Amazon Services LLC Associates Program, an affiliate advertising program designed to provide a means for sites to earn advertising fees by advertising and linking to Amazon.com.