Research proves shock wave from explosives causes significant eye damage

June 30, 2014

Researchers at The University of Texas at San Antonio (UTSA) are discovering that the current protective eyewear used by our U.S. armed forces might not be adequate to protect soldiers exposed to explosive blasts.

According to a recent study, ocular injuries now account for 13 percent of all battlefield injuries and are the fourth most common military deployment-related injury.

With the support of the U.S. Department of Defense, UTSA biomedical engineering assistant professor Matthew Reilly and distinguished senior lecture in geological sciences Walter Gray have been collaborating with researchers at the U.S. Army Institute of Surgical Research at Joint Base San Antonio Fort Sam Houston and the UT Health Science Center at San Antonio to understand the unseen effects that can occur as a result of a blast injury.

In a basement laboratory at Fort Sam Houston military base, the research team has spent the last two years simulating Improvised Explosive Device (IED) blasts on postmortem pig eyes using a high-powered shock tube.

So far, they have discovered that the shock wave alone created by an IED, even in the absence of shrapnel or other particles, can cause significant damage to the eyes that could lead to partial or total blindness.

Perhaps the most striking discovery is that these blasts can damage the optic nerve, which transmits information from the eye to the brain. Optic nerve injuries occur even at low pressures and could be the cause of many visual deficits, which until now have been associated traumatic brain injuries.

"There has been considerable controversy surrounding whether primary blasts could damage the eye," said Reilly. "No one had shown conclusive evidence before, perhaps because they weren't looking at the problem quite as closely as we have. We had some idea of what to look for based on results from computational models and now we have experimental data that supports this phenomenon."

This groundbreaking research will not only help physicians know what type of injuries to screen for and treat following a blast injury, it will also create a reliable model to test various protective eyewear solutions that might prevent or reduce blast damage to the eyes.

Moving forward, the research team plans to delve further into the link between the optic nerve and the brain in an effort to understand the causes and symptoms of traumatic brain injuries.
-end-
Learn more about the UTSA College of Engineering at engineering.utsa.edu.

Connect online with UTSA at http://www.facebook.com/utsa, http://www.twitter.com/utsa, http://www.youtube.com/utsa or http://www.utsa.edu/today.

About UTSA

The University of Texas at San Antonio (UTSA) is an emerging Tier One research institution specializing in health, energy, security, sustainability, and human and social development. With nearly 29,000 students, it is the largest university in the San Antonio metropolitan region. UTSA advances knowledge through research and discovery, teaching and learning, community engagement and public service. The university embraces multicultural traditions and serves as a center for intellectual and creative resources as well as a catalyst for socioeconomic development and the commercialization of intellectual property - for Texas, the nation and the world.

University of Texas at San Antonio

Related Brain Articles from Brightsurf:

Glioblastoma nanomedicine crosses into brain in mice, eradicates recurring brain cancer
A new synthetic protein nanoparticle capable of slipping past the nearly impermeable blood-brain barrier in mice could deliver cancer-killing drugs directly to malignant brain tumors, new research from the University of Michigan shows.

Children with asymptomatic brain bleeds as newborns show normal brain development at age 2
A study by UNC researchers finds that neurodevelopmental scores and gray matter volumes at age two years did not differ between children who had MRI-confirmed asymptomatic subdural hemorrhages when they were neonates, compared to children with no history of subdural hemorrhage.

New model of human brain 'conversations' could inform research on brain disease, cognition
A team of Indiana University neuroscientists has built a new model of human brain networks that sheds light on how the brain functions.

Human brain size gene triggers bigger brain in monkeys
Dresden and Japanese researchers show that a human-specific gene causes a larger neocortex in the common marmoset, a non-human primate.

Unique insight into development of the human brain: Model of the early embryonic brain
Stem cell researchers from the University of Copenhagen have designed a model of an early embryonic brain.

An optical brain-to-brain interface supports information exchange for locomotion control
Chinese researchers established an optical BtBI that supports rapid information transmission for precise locomotion control, thus providing a proof-of-principle demonstration of fast BtBI for real-time behavioral control.

Transplanting human nerve cells into a mouse brain reveals how they wire into brain circuits
A team of researchers led by Pierre Vanderhaeghen and Vincent Bonin (VIB-KU Leuven, Université libre de Bruxelles and NERF) showed how human nerve cells can develop at their own pace, and form highly precise connections with the surrounding mouse brain cells.

Brain scans reveal how the human brain compensates when one hemisphere is removed
Researchers studying six adults who had one of their brain hemispheres removed during childhood to reduce epileptic seizures found that the remaining half of the brain formed unusually strong connections between different functional brain networks, which potentially help the body to function as if the brain were intact.

Alcohol byproduct contributes to brain chemistry changes in specific brain regions
Study of mouse models provides clear implications for new targets to treat alcohol use disorder and fetal alcohol syndrome.

Scientists predict the areas of the brain to stimulate transitions between different brain states
Using a computer model of the brain, Gustavo Deco, director of the Center for Brain and Cognition, and Josephine Cruzat, a member of his team, together with a group of international collaborators, have developed an innovative method published in Proceedings of the National Academy of Sciences on Sept.

Read More: Brain News and Brain Current Events
Brightsurf.com is a participant in the Amazon Services LLC Associates Program, an affiliate advertising program designed to provide a means for sites to earn advertising fees by advertising and linking to Amazon.com.