Nav: Home

Electron scavenging to mimic radiation damage

June 30, 2016

High energy radiation affects biological tissues, leading to short-term reactions. These generate, as a secondary product, electrons with low energy, referred to as LEEs, which are ultimately involved in radiation damage. In a new study, scientists study the effect of LEEs on a material called trifluoroacetamide (TFAA). This material was selected because it is suitable for electron scavenging using a process known as dissociative electron attachment (DEA). These findings were recently published in EPJ D by Janina Kopyra of Siedlce University, Poland, and colleagues in Germany, as part of a topical issue on Advances in Positron and Electron Scattering.

Experiments confirm that DEA reactions occur due to electrons entering unoccupied molecular orbitals, at an energy level located near one electronvolt. This means that low-energy electrons can be exploited with solid materials like TFAA to trigger selective reactions, resulting in multiple bond cleavages inside the material. Ultimately, this leads to the creation of specific negative ions and stable molecules of interest.

The team performed two types of experiment. The first type, in gas phase, involves crossing a monoenergetic beam of LEEs with a molecular beam containing TFAA. The authors report the formation of fragment negative ions from the DEA processes. Energetic considerations leads them to then postulate that the reaction lead to the loss of neutral molecules--namely hydrogen fluoride (HF), isocyanic acid (HNCO) or water (H2O) -- from transient parent anion.

In a second series of experiments, the author shine a LEE beam on a solid film of TFAA on a metal substrate. These low energy electrons trigger surprisingly complex reactions in TFAA, leading to multiple bond cleavages inside the material. These, in turn, result in the formation of negative ions and stable neutral molecules like HF, HNCO or water as a neutral counterparts. The results confirm the hypothesis of the gas phase experiment. The authors confirm that formation of stable molecules is effectively due to electron-induced fragmentation of TFAA.
-end-
Reference:

J. Kopyra, C. König-Lehmann, E. Illenberger, J. Warneke, P. Swiderek (2016), Low Energy Electron Induced Reactions in Fluorinated Acetamide - Probing Negative Ions and Neutral Stable Counterparts, Eur. Phys. J. D 70:140, DOI 10.1140/epjd/e2016-70143-4

Springer

Related Electrons Articles:

Deceleration of runaway electrons paves the way for fusion power
Fusion power has the potential to provide clean and safe energy that is free from carbon dioxide emissions.
Shining light on low-energy electrons
The classic method for studying how electrons interact with matter is by analyzing their scattering through thin layers of a known substance.
Ultrafast nanophotonics: Turmoil in sluggish electrons' existence
An international team of physicists has monitored the scattering behavior of electrons in a non-conducting material in real-time.
NASA mission uncovers a dance of electrons in space
NASA's MMS mission studies how electrons spiral and dive around the planet in a complex dance dictated by the magnetic and electric fields, and a new study revealed a bizarre new type of motion exhibited by these electrons.
'Hot' electrons don't mind the gap
Rice University scientists discover that 'hot' electrons can create a photovoltage about a thousand times larger than ordinary temperature differences in nanoscale gaps in gold wires.
Electrons used to control ultrashort laser pulses
We may soon get better insight into the microcosm and the world of electrons.
Supercool electrons
Study of electron movement on helium may impact the future of quantum computing.
Two electrons go on a quantum walk and end up in a qudit
There is a variety of physical systems that can be used to implement a separate quantum bit, but significantly less research has been done into systems of several qubits or qudits.
Radiation that knocks electrons out and down, one after another
Researchers at Japan's Tohoku University are investigating novel ways by which electrons are knocked out of matter.
Controlling electrons in time and space
A new method has been developed to control electrons being emitted from metal tips.

Related Electrons Reading:

Best Science Podcasts 2019

We have hand picked the best science podcasts for 2019. Sit back and enjoy new science podcasts updated daily from your favorite science news services and scientists.
Now Playing: TED Radio Hour

Moving Forward
When the life you've built slips out of your grasp, you're often told it's best to move on. But is that true? Instead of forgetting the past, TED speakers describe how we can move forward with it. Guests include writers Nora McInerny and Suleika Jaouad, and human rights advocate Lindy Lou Isonhood.
Now Playing: Science for the People

#527 Honey I CRISPR'd the Kids
This week we're coming to you from Awesome Con in Washington, D.C. There, host Bethany Brookshire led a panel of three amazing guests to talk about the promise and perils of CRISPR, and what happens now that CRISPR babies have (maybe?) been born. Featuring science writer Tina Saey, molecular biologist Anne Simon, and bioethicist Alan Regenberg. A Nobel Prize winner argues banning CRISPR babies won’t work Geneticists push for a 5-year global ban on gene-edited babies A CRISPR spin-off causes unintended typos in DNA News of the first gene-edited babies ignited a firestorm The researcher who created CRISPR twins defends...