Nav: Home

Using gravitational waves to catch runaway black holes

June 30, 2016

Researchers have developed a new method for detecting and measuring one of the most powerful, and most mysterious, events in the Universe - a black hole being kicked out of its host galaxy and into intergalactic space at speeds as high as 5000 kilometres per second.

The method, developed by researchers from the University of Cambridge, could be used to detect and measure so-called black hole superkicks, which occur when two spinning supermassive black holes collide into each other, and the recoil of the collision is so strong that the remnant of the black hole merger is bounced out of its host galaxy entirely. Their results are reported in the journal Physical Review Letters.

Earlier this year, the LIGO Collaboration announced the first detection of gravitational waves - ripples in the fabric of spacetime - coming from the collision of two black holes, confirming a major prediction of Einstein's general theory of relativity and marking the beginning of a new era in astronomy. As the sensitivity of the LIGO detectors is improved, even more gravitational waves are expected to be detected - the second successful detection was announced in June.

As two black holes circle each other, they emit gravitational waves in a highly asymmetric way, which leads to a net emission of momentum in some preferential direction. When the black holes finally do collide, conservation of momentum imparts a recoil, or kick, much like when a gun is fired. When the two black holes are not spinning, the speed of the recoil is around 170 kilometres per second. But when the black holes are rapidly spinning in certain orientations, the speed of the recoil can be as high as 5000 kilometres per second, easily exceeding the escape velocity of even the most massive galaxies, sending the black hole remnant resulting from the merger into intergalactic space.

The Cambridge researchers have developed a new method for detecting these kicks based on the gravitational wave signal alone, by using the Doppler Effect. The Doppler Effect is the reason that the sound of a passing car seems to lower in pitch as it gets further away. It is also widely used in astronomy: electromagnetic radiation coming from objects which are moving away from the Earth is shifted towards the red end of the spectrum, while radiation coming from objects moving closer to the Earth is shifted towards the blue end of the spectrum. Similarly, when a black hole kick has sufficient momentum, the gravitational waves it emits will be red-shifted if it is directed away from the Earth, while they will be blue-shifted if it's directed towards the Earth.

"If we can detect a Doppler shift in a gravitational wave from the merger of two black holes, what we're detecting is a black hole kick," said study co-author Davide Gerosa, a PhD student from Cambridge's Department of Applied Mathematics and Theoretical Physics. "And detecting a black hole kick would mean a direct observation that gravitational waves are carrying not just energy, but linear momentum as well."

Detecting this elusive effect requires gravitational-wave experiments capable of observing black hole mergers with very high precision. A black hole kick cannot be directly detected using current land-based gravitational wave detectors, such as those at LIGO. However, according to the researchers, the new space-based gravitational wave detector known as eLISA, funded by the European Space Agency (ESA) and due for launch in 2034, will be powerful enough to detect several of these runaway black holes. In 2015, ESA launched the LISA Pathfinder, which is successfully testing several technologies which could be used to measure gravitational waves from space.

The researchers found that the eLISA detector will be particularly well-suited to detecting black hole kicks: it will be capable of measuring kicks as small as 500 kilometres per second, as well as the much faster superkicks. Kick measurements will tell us more about the properties of black hole spins, and also provide a direct way of measuring the momentum carried by gravitational waves, which may lead to new opportunities for testing general relativity.

"When the detection of gravitational waves was announced, a new era in astronomy began, since we can now actually observe two merging black holes," said study co-author Christopher Moore, a Cambridge PhD student who was also a member of the team which announced the detection of gravitational waves earlier this year. "We now have two ways of detecting black holes, instead of just one - it's amazing that just a few months ago, we couldn't say that. And with the future launch of new space-based gravitational wave detectors, we'll be able to look at gravitational waves on a galactic, rather than a stellar, scale."

University of Cambridge

Related Black Hole Articles:

Scientists make waves with black hole research
Scientists at the University of Nottingham have made a significant leap forward in understanding the workings of one of the mysteries of the universe.
Collapsing star gives birth to a black hole
Astronomers have watched as a massive, dying star was likely reborn as a black hole.
When helium behaves like a black hole
A team of scientists has discovered that a law controlling the bizarre behavior of black holes out in space -- is also true for cold helium atoms that can be studied in laboratories.
Star in closest orbit ever seen around black hole
Astronomers have found evidence of a star that whips around a likely black hole twice an hour.
Tail of stray black hole hiding in the Milky Way
By analyzing the gas motion of an extraordinarily fast-moving cosmic cloud in a corner of the Milky Way, Astronomers found hints of a wandering black hole hidden in the cloud.
Hubble gazes into a black hole of puzzling lightness
The beautiful spiral galaxy visible in the center of the image is known as RX J1140.1+0307, a galaxy in the Virgo constellation imaged by the NASA/ESA Hubble Space Telescope, and it presents an interesting puzzle.
Clandestine black hole may represent new population
Astronomers have combined data from NASA's Chandra X-ray Observatory, the Hubble Space Telescope and the National Science Foundation's Karl G.
When will a neutron star collapse to a black hole?
Astrophysicists from Goethe-University Frankfurt have found a simple formula for the maximum mass of a rotating neutron star and hence answered a question that had been open for decades.
Behemoth black hole found in an unlikely place
Astronomers have uncovered a near-record breaking supermassive black hole, weighing 17 billion suns, in an unlikely place: in the center of a galaxy in a sparsely populated area of the universe.
Behemoth black hole found in an unlikely place
Astronomers have uncovered one of the biggest supermassive black holes, with the mass of 17 billion Suns, in an unlikely place: the centre of a galaxy that lies in a quiet backwater of the Universe.

Related Black Hole Reading:

Best Science Podcasts 2019

We have hand picked the best science podcasts for 2019. Sit back and enjoy new science podcasts updated daily from your favorite science news services and scientists.
Now Playing: TED Radio Hour

Don't Fear Math
Why do many of us hate, even fear math? Why are we convinced we're bad at it? This hour, TED speakers explore the myths we tell ourselves and how changing our approach can unlock the beauty of math. Guests include budgeting specialist Phylecia Jones, mathematician and educator Dan Finkel, math teacher Eddie Woo, educator Masha Gershman, and radio personality and eternal math nerd Adam Spencer.
Now Playing: Science for the People

#518 With Genetic Knowledge Comes the Need for Counselling
This week we delve into genetic testing - for yourself and your future children. We speak with Jane Tiller, lawyer and genetic counsellor, about genetic tests that are available to the public, and what to do with the results of these tests. And we talk with Noam Shomron, associate professor at the Sackler School of Medicine at Tel Aviv University, about technological advancements his lab has made in the genetic testing of fetuses.