Nav: Home

Table top plasma gets wind of solar turbulence

June 30, 2017

Turbulent magnetic field dynamics that explain astrophysical phenomena like the evolution of stars could thus far be obtained only through observations via telescopes and satellites. Now a team of scientists from India and Portugal have recreated such magnetic turbulence on a table top in the lab, using a high intensity ultrashort laser pulse to excite a hot, dense plasma on a solid surface and followed the extremely fast evolution of the giant magnetic field generated by the plasma dynamics. This ground-breaking study will be published in Nature Communications on 30 June.

Turbulence is everywhere- from tea cups to tokomaks and from water jets to weather systems, it is something we all see and experience. Yet, even after centuries of serious scientific study, fluid turbulence is still not properly understood and remains "Interesting. Vexing. Longstanding. Unsolved."[1]. While it is difficult to define turbulence simply, it has many recognizable features, the most common being the fluctuations in parameters like velocity and pressure, indicating randomization of the flow [2]. By the way, turbulence is not all bad and destructive as you might feel when tossed around on a flight during bad weather. One good feature is that it enables much faster mixing than possible only with normal, slow diffusion. For instance, the sugar you added in your cup of tea this morning would have taken hours and days to disperse but for your stirring which caused your tea to become turbulent. As you have surely noticed, you stirred the tea in a large circle, but the swirling spread to smaller and smaller lengths and eventually, the mixing occurred at the molecular level. The end result? Even the smallest drop of tea is as sweet as a large gulp! Turbulence also helps in mixing fuel and oxygen for efficient combustion in engines.

Much of our universe is of course not an ordinary fluid but consists of highly ionized gas known as plasma and this plasma can often be extremely hot and swirling at unimaginable speeds. Turbulence in a plasma is much more complex than that in neutral hydrodynamic fluids. In a charged plasma environment, the negatively charged, light electrons and positive heavy ions respond at vastly different length and time scales. The motion of these charged species is governed by electromagnetic forces and the current flow through the charge particle dynamics leads to magnetic field generation. Therefore the randomness of magnetic fields often mimics the fluid turbulence in plasmas.

The team of scientists leading this new study, at the Tata Institute of Fundamental Research, Mumbai, Institute of Plasma Research, Gandhinagar (both in India) and at the Instituto Superior Tecnico, Universidade de Lisboa, Portugal find that the turbulence in the magnetic field is initially driven by the electrons (at a trillionth of a second) and the ions step in and take over at longer times. This is the first time such a 'relay race' involving two different species has been glimpsed. Further, these lab observations have an uncanny resemblance to the satellite data on the magnetic field spectra measured for turbulent astrophysical plasmas in the solar wind, solar photosphere and earth's magnetosheath. Although in the laser experiment the electrons in the plasma get energised initially, the ion dominant response that kicks in at later times shows spectral features similar to those in the astro systems. These experiments thus establish clear connections between the two scenarios, even though the driver of turbulence in the lab plasma is very different from that in the astrophysical system.

Now that we have got wind of solar turbulence on a table top, can we use lab experiments to turn the tables on the intractable problem of turbulence? Well, that may still be a long way off but it is a tantalising prospect that reliable measurements in the lab might make us better and better at peeking into turbulent stellar scenarios.

And that should set off stars in our eyes!
-end-
References:

[1] L.P. Kadanoff, Physics Today, Vol. 48, no.9, p11 (1995)
[2] K.R. Sreenivasan, McGraw-Hill Encyclopaedia of Science and Technology, 10th Edn., Vol. 18, p725.
[3] G. Chatterjee et al., Nature Communications, 10.1038/NCOMMS15970 (2017)

Tata Institute of Fundamental Research

Related Evolution Articles:

Is evolution predictable?
An international team of scientists working with Heliconius butterflies at the Smithsonian Tropical Research Institute (STRI) in Panama was faced with a mystery: how do pairs of unrelated butterflies from Peru to Costa Rica evolve nearly the same wing-color patterns over and over again?
Predicting evolution
A new method of 're-barcoding' DNA allows scientists to track rapid evolution in yeast.
Insect evolution: Insect evolution
Scientists at Ludwig-Maximilians-Universitaet (LMU) in Munich have shown that the incidence of midge and fly larvae in amber is far higher than previously thought.
Evolution of aesthetic dentistry
One of the main goals of dental treatment is to mimic teeth and design smiles in the most natural and aesthetic manner, based on the individual and specific needs of the patient.
An evolution in the understanding of evolution
In an open-source research paper, a UVA Engineering professor and her former Ph.D. student share a new, more accurate method for modeling evolutionary change.
Chemical evolution -- One-pot wonder
Before life, there was RNA: Scientists at Ludwig-Maximilians-Universitaet (LMU) in Munich show how the four different letters of this genetic alphabet could be created from simple precursor molecules on early Earth -- under the same environmental conditions.
Catching evolution in the act
Researchers have produced some of the first evidence that shows that artificial selection and natural selection act on the same genes, a hypothesis predicted by Charles Darwin in 1859.
Guppies teach us why evolution happens
New study on guppies shows that animals evolve in response the the environment they create in the absence of predators, rather than in response to the risk of being eaten.
Undercover evolution
Our individuality is encrypted in our DNA, but it is deeper than expected.
Evolution designed by parasites
In 'Invisible Designers: Brain Evolution Through the Lens of Parasite Manipulation,' published in the September 2019 issue of The Quarterly Review of Biology, Marco Del Giudice explores an overlooked aspect of the relationship between parasites and their hosts by systematically discussing the ways in which parasitic behavior manipulation may encourage the evolution of mechanisms in the host's nervous and endocrine systems.
More Evolution News and Evolution Current Events

Top Science Podcasts

We have hand picked the top science podcasts of 2019.
Now Playing: TED Radio Hour

Risk
Why do we revere risk-takers, even when their actions terrify us? Why are some better at taking risks than others? This hour, TED speakers explore the alluring, dangerous, and calculated sides of risk. Guests include professional rock climber Alex Honnold, economist Mariana Mazzucato, psychology researcher Kashfia Rahman, structural engineer and bridge designer Ian Firth, and risk intelligence expert Dylan Evans.
Now Playing: Science for the People

#541 Wayfinding
These days when we want to know where we are or how to get where we want to go, most of us will pull out a smart phone with a built-in GPS and map app. Some of us old timers might still use an old school paper map from time to time. But we didn't always used to lean so heavily on maps and technology, and in some remote places of the world some people still navigate and wayfind their way without the aid of these tools... and in some cases do better without them. This week, host Rachelle Saunders...
Now Playing: Radiolab

Dolly Parton's America: Neon Moss
Today on Radiolab, we're bringing you the fourth episode of Jad's special series, Dolly Parton's America. In this episode, Jad goes back up the mountain to visit Dolly's actual Tennessee mountain home, where she tells stories about her first trips out of the holler. Back on the mountaintop, standing under the rain by the Little Pigeon River, the trip triggers memories of Jad's first visit to his father's childhood home, and opens the gateway to dizzying stories of music and migration. Support Radiolab today at Radiolab.org/donate.