Andalusian experts indicate new elements responsible for instability in chromosomes

June 30, 2017

Genome instability is the main risk factor in the development of tumours in humans. Understanding how, where, when and why these mutations are produced in DNA is one of the great objectives of the global scientific community. Therefore, a group of experts from the University of Seville and the Andalusian Center for Molecular Biology and Regenerative Medicine (Cabimer) has published a study that indicates a new element involved in this process: chromatin.

In the scientific article "Histone mutations separate R loops from genome instability induction" published in Molecular Cell, the researchers state that RNA joins with DNA by chance or because of a disease, the structure of the chromatin, the protein envelope of the chromosomes is altered, causing breaks in the DNA. Gene mutations involved in the transcription and transport of RNA also cause damage in DNA, which they have shown is caused by changes in the chromatin. In these circumstances, the DNA cannot replicate itself naturally, generating replication stress, mutations and chromosome mutations.

"By means of basic research on model organisms, we are trying to understand human genome instability to identify elements, which, in the future, might be able to be explored as targets of new anti-tumour medicines", explains the researcher responsible for the project and director of Cabimer, Andrés Aguilera. Also, he adds that "in this project, we have taken a step forward in showing that chromatin also plays a key role on some DNA mutations, especially those controlled by RNA. If we can show that this anomaly doesn't occur in healthy cells, we will be able to think about exploring these structures as possible therapeutic targets".

The project is part of the doctoral theses of Desiré García-Pichardo and Juan Carlos Martínez Cañas co-directed by Ana García-Rondón and Belén-Gómez-González, among other authors, and is part of the European research project, ERC Advanced, directed by Andrés Aguilera to increase knowledge about genetic instability produced by DNA-RNA hybrids. This project started in 2015, and will finish at the end of 2020 and is financed by more than two million euros from the European Commission.
-end-


University of Seville

Related DNA Articles from Brightsurf:

A new twist on DNA origami
A team* of scientists from ASU and Shanghai Jiao Tong University (SJTU) led by Hao Yan, ASU's Milton Glick Professor in the School of Molecular Sciences, and director of the ASU Biodesign Institute's Center for Molecular Design and Biomimetics, has just announced the creation of a new type of meta-DNA structures that will open up the fields of optoelectronics (including information storage and encryption) as well as synthetic biology.

Solving a DNA mystery
''A watched pot never boils,'' as the saying goes, but that was not the case for UC Santa Barbara researchers watching a ''pot'' of liquids formed from DNA.

Junk DNA might be really, really useful for biocomputing
When you don't understand how things work, it's not unusual to think of them as just plain old junk.

Designing DNA from scratch: Engineering the functions of micrometer-sized DNA droplets
Scientists at Tokyo Institute of Technology (Tokyo Tech) have constructed ''DNA droplets'' comprising designed DNA nanostructures.

Does DNA in the water tell us how many fish are there?
Researchers have developed a new non-invasive method to count individual fish by measuring the concentration of environmental DNA in the water, which could be applied for quantitative monitoring of aquatic ecosystems.

Zigzag DNA
How the cell organizes DNA into tightly packed chromosomes. Nature publication by Delft University of Technology and EMBL Heidelberg.

Scientists now know what DNA's chaperone looks like
Researchers have discovered the structure of the FACT protein -- a mysterious protein central to the functioning of DNA.

DNA is like everything else: it's not what you have, but how you use it
A new paradigm for reading out genetic information in DNA is described by Dr.

A new spin on DNA
For decades, researchers have chased ways to study biological machines.

From face to DNA: New method aims to improve match between DNA sample and face database
Predicting what someone's face looks like based on a DNA sample remains a hard nut to crack for science.

Read More: DNA News and DNA Current Events
Brightsurf.com is a participant in the Amazon Services LLC Associates Program, an affiliate advertising program designed to provide a means for sites to earn advertising fees by advertising and linking to Amazon.com.