Nav: Home

Spinning electrons open the door to future hybrid electronics

June 30, 2017

A discovery of how to control and transfer spinning electrons paves the way for novel hybrid devices that could outperform existing semiconductor electronics. In a study published in Nature Communications, researchers at Linkoping University in Sweden demonstrate how to combine a commonly used semiconductor with a topological insulator, a recently discovered state of matter with unique electrical properties.

Just as the Earth spins around its own axis, so does an electron, in a clockwise or counter-clockwise direction. "Spintronics" is the name used to describe technologies that exploit both the spin and the charge of the electron. Current applications are limited, and the technology is mainly used in computer hard drives. Spintronics promises great advantages over conventional electronics, including lower power consumption and higher speed.

In terms of electrical conduction, natural materials are classified into three categories: conductors, semiconductors and insulators. Researchers have recently discovered an exotic phase of matter known as "topological insulators", which is an insulator inside, but a conductor on the surface. One of the most striking properties of topological insulators is that an electron must travel in a specific direction along the surface of the material, determined by its spin direction. This property is known as "spin-momentum locking".

"The surface of a topological insulator is like a well-organised divided highway for electrons, where electrons having one spin direction travel in one direction, while electrons with the opposite spin direction travel in the opposite direction. They can travel fast in their designated directions without colliding and without losing energy," says Yuqing Huang, Ph D student at the Department of Physics, Chemistry and Biology (IFM) at Linkoping University.

These properties make topological insulators promising for spintronic applications. However, one key question is how to generate and manipulate the surface spin current in topological insulators.

The research team behind the current study has now taken the first step towards transferring spin-oriented electrons between a topological insulator and a conventional semiconductor. They generated electrons with the same spin in gallium arsenide, GaAs, a semiconductor commonly used in electronics. To achieve this, they used circularly polarised light, in which the electric field rotates either clockwise or counter-clockwise when seen in the direction of travel of the light. The spin-polarised electrons could then be transferred from GaAs to a topological insulator, to generate a directional electric current on the surface. The researchers could control the orientation of spin of the electrons, and the direction and the strength of the electric current in the topological insulator bismuth telluride, Bi2Te3. This flexibility has according to the researchers not been available before. All of this was accomplished without applying an external electric voltage, demonstrating the potential of efficient conversion from light energy to electricity. The findings are significant for the design of novel spintronic devices that exploit the interaction of matter with light, a technology known as "opto-spintronics".

"We combine the superior optical properties of GaAs with the unique electrical properties of a topological insulator. This has given us new ideas for designing opto-spintronic devices that can be used for efficient and robust information storage, exchange, processing and read-out in future information technology," says Professor Weimin Chen, who has led the study.
-end-
The research was performed in collaboration with scientists from the Chinese Academy of Sciences in Shanghai. It was financed with support from, among others, the Swedish Research Council, the Swedish Government Strategic Research Area in Materials Science on Functional Materials at Linkoping University, the Swedish Foundation for Strategic Research, the Key Program of Natural Science Foundation of China and the Natural Science Foundation of China.

Article: Spin injection and helicity control of surface spin photocurrent in a three dimensional topological insulator, Y.Q. Huang, Y.X. Song, S.M. Wang, I.A. Buyanova, W.M. Chen, Nature Communications, 8, published online 22 May 2017, doi: 10.1038/ncomms15401

For further questions, please contact:

Weimin Chen, professor, weimin.chen@liu.se, + 46 13-281795 or +46 70 512 1388
Karin Soderlund Leifler, press officer, karin.soderlund.leifler@liu.se, +46 13 281395

Linköping University

Related Semiconductor Articles:

Ultrafast tunable semiconductor metamaterial created
An international team of researchers has devised an ultrafast tunable metamaterial based on gallium arsenide nanoparticles, as published by Nature Communications.
Graphene 'copy machine' may produce cheap semiconductor wafers
A new technique developed by MIT engineers may vastly reduce the overall cost of wafer technology and enable devices made from more exotic, higher-performing semiconductor materials than conventional silicon.
Method improves semiconductor fiber optics, paves way for developing devices
A new method to improve semiconductor fiber optics may lead to a material structure that might one day revolutionize the global transmission of data, according to an interdisciplinary team of researchers.
Scientists discover new 'boat' form of promising semiconductor GeSe
Princeton researchers have discovered a new form of the simple compound GeSe that has surprisingly escaped detection until now.
UNIST engineers oxide semiconductor just single atom thick
A new study, affiliated with South Korea's Ulsan National Institute of Science and Technology, has introduced a new technique that efficiently isolates circulating tumor cells from whole blood at a liquid-liquid interface.
Semiconductor-free microelectronics are now possible, thanks to metamaterials
Engineers at the University of California San Diego have fabricated the first semiconductor-free, optically-controlled microelectronic device.
Notre Dame researchers find transition point in semiconductor nanomaterials
Collaborative research at Notre Dame has demonstrated that electronic interactions play a significant role in the dimensional crossover of semiconductor nanomaterials.
Graphene key to growing 2-dimensional semiconductor with extraordinary properties
A newly discovered method for making two-dimensional materials could lead to new and extraordinary properties, particularly in a class of materials called nitrides, say the Penn State materials scientists who discovered the process.
UA organic semiconductor research could boost electronics
A team of UA researchers in engineering and chemistry has received $590,000 from the National Science Foundation to enhance the effectiveness of organic semiconductors for making ultrathin and flexible optoelectronics like OLED displays for TVs and mobile phones.
NREL theory establishes a path to high-performance 2-D semiconductor devices
Researchers at the Energy Department's National Renewable Energy Laboratory (NREL) have uncovered a way to overcome a principal obstacle in using two-dimensional (2-D) semiconductors in electronic and optoelectronic devices.

Related Semiconductor Reading:

Best Science Podcasts 2019

We have hand picked the best science podcasts for 2019. Sit back and enjoy new science podcasts updated daily from your favorite science news services and scientists.
Now Playing: TED Radio Hour

Setbacks
Failure can feel lonely and final. But can we learn from failure, even reframe it, to feel more like a temporary setback? This hour, TED speakers on changing a crushing defeat into a stepping stone. Guests include entrepreneur Leticia Gasca, psychology professor Alison Ledgerwood, astronomer Phil Plait, former professional athlete Charly Haversat, and UPS training manager Jon Bowers.
Now Playing: Science for the People

#524 The Human Network
What does a network of humans look like and how does it work? How does information spread? How do decisions and opinions spread? What gets distorted as it moves through the network and why? This week we dig into the ins and outs of human networks with Matthew Jackson, Professor of Economics at Stanford University and author of the book "The Human Network: How Your Social Position Determines Your Power, Beliefs, and Behaviours".