Why is the Earth's F/Cl ratio not chondritic?

June 30, 2019

Primitive chondrites, un-molten stony meteorites, are believed to be the building blocks of the Earth. Because terrestrial planets have experienced chemical differentiation in the core, mantle, and hydrosphere, the elemental abundance pattern of some elements at the planetary surface is not chondritic. In other words, the non-chondritic abundance pattern of elements on the planetary surface is a key to understanding the chemical differentiation processes of terrestrial planets.

It has been reported that the ratio of fluorine to chlorine in the silicate Earth (mantle + hydrosphere) is super-chondritic. This indicates an enrichment of fluorine in the silicate Earth compared to chlorine during and/or after the formation of the Earth. However, the processes which produced the super-chondritic F/Cl ratio of the Earth are poorly understood. In order to investigate the origin of the non-chondritic F/Cl ratio of the Earth, the research group of Ehime University and the University of Tokyo experimentally simulated fluorine and chlorine fractionation during magma ocean crystallization using a high-pressure apparatus (Kuwahara et al., 2019). The researchers found that fluorine was moderately compatible with bridgmanite, the most dominant mineral in the Earth's mantle, but chlorine was highly incompatible with mantle minerals, including bridgmanite. This indicates that the crystallized mantle, resulting from a magma ocean, would have been enriched in fluorine, and chlorine may have become concentrated in the planetary surface.

After magma ocean crystallization, how was the super-chondritic F/Cl ratio in the silicate Earth established? Kuwahara et al. (2019) have proposed the escape of the hydrosphere during the formation of the Earth. In this scenario, chlorine is selectively lost into space while fluorine is retained in the silicate Earth, elevating the F/Cl ratio. Interestingly, previous studies have also proposed the same scenario to explain the Ar/Xe ratio of the silicate Earth (Shcheka and Keppler, 2012). These results suggest that the earliest atmosphere and, perhaps, ocean of the Earth may not have survived. If this is the case, the current Earth's atmosphere and ocean might both be the second, having their origins in mantle degassing and/or impact delivery of volatiles after the formation of the Earth.

Ehime University

Related Atmosphere Articles from Brightsurf:

ALMA shows volcanic impact on Io's atmosphere
New radio images from ALMA show for the first time the direct effect of volcanic activity on the atmosphere of Jupiter's moon Io.

New study detects ringing of the global atmosphere
A ringing bell vibrates simultaneously at a low-pitched fundamental tone and at many higher-pitched overtones, producing a pleasant musical sound. A recent study, just published in the Journal of the Atmospheric Sciences by scientists at Kyoto University and the University of Hawai'i at Mānoa, shows that the Earth's entire atmosphere vibrates in an analogous manner, in a striking confirmation of theories developed by physicists over the last two centuries.

Estuaries are warming at twice the rate of oceans and atmosphere
A 12-year study of 166 estuaries in south-east Australia shows that the waters of lakes, creeks, rivers and lagoons increased 2.16 degrees in temperature and increased acidity.

What makes Saturn's atmosphere so hot
New analysis of data from NASA's Cassini spacecraft found that electric currents, triggered by interactions between solar winds and charged particles from Saturn's moons, spark the auroras and heat the planet's upper atmosphere.

Galactic cosmic rays affect Titan's atmosphere
Planetary scientists using the Atacama Large Millimeter/submillimeter Array (ALMA) revealed the secrets of the atmosphere of Titan, the largest moon of Saturn.

Physics: An ultrafast glimpse of the photochemistry of the atmosphere
Researchers at Ludwig-Maximilians-Universitaet (LMU) in Munich have explored the initial consequences of the interaction of light with molecules on the surface of nanoscopic aerosols.

Using lasers to visualize molecular mysteries in our atmosphere
Molecular interactions between gases and liquids underpin much of our lives, but difficulties in measuring gas-liquid collisions have so far prevented the fundamental exploration of these processes.

The atmosphere of a new ultra hot Jupiter is analyzed
The combination of observations made with the CARMENES spectrograph on the 3.5m telescope at Calar Alto Observatory (Almería), and the HARPS-N spectrograph on the National Galileo Telescope (TNG) at the Roque de los Muchachos Observatory (Garafía, La Palma) has enabled a team from the Instituto de Astrofísica de Canarias (IAC) and from the University of La Laguna (ULL) to reveal new details about this extrasolar planet, which has a surface temperature of around 2000 K.

An exoplanet loses its atmosphere in the form of a tail
A new study, led by scientists from the Instituto de Astrofísica de Canarias (IAC), reveals that the giant exoplanet WASP-69b carries a comet-like tail made up of helium particles escaping from its gravitational field propelled by the ultraviolet radiation of its star.

Iron and titanium in the atmosphere of an exoplanet
Exoplanets can orbit close to their host star. When the host star is much hotter than our sun, then the exoplanet becomes as hot as a star.

Read More: Atmosphere News and Atmosphere Current Events
Brightsurf.com is a participant in the Amazon Services LLC Associates Program, an affiliate advertising program designed to provide a means for sites to earn advertising fees by advertising and linking to Amazon.com.