Nav: Home

Research reveals fishing pressures affect tropical and temperate reefs differentl

June 30, 2020

In a study published recently in Ecology and Evolution, an international team of researchers focused on what can happen to ocean ecosystems when fishing pressure increases or decreases, and how this differs between tropical to temperate marine ecosystems. The team, led by Elizabeth Madin, researcher at the Hawai'i Institute of Marine Biology (HIMB) in the University of Hawai'i (UH) at Mānoa School of Ocean and Earth Science and Technology (SOEST), found ecosystems do not respond universally to fishing.

There has been much debate about the degree to which ocean ecosystems are impacted by fishing, also termed "top-down forcing" because such changes occur when predators at the top of the food web are removed, versus the availability of nutrients and other resources in an ecosystem, termed "bottom-up forcing".

"Examples from a variety of marine systems of exploitation-induced, top-down forcing have led to a general view that human-induced predator perturbations can disrupt entire marine food webs, yet other studies that have found no such evidence provide a counterpoint," said Madin.

Madin worked with an amazing team of marine ecologists from all over the world, particularly those from the Australian Institute of Marine Science (AIMS) and the University of Tasmania (UTas). Using time?series data for 104 reef communities spanning tropical to temperate Australia from 1992 to 2013, they aimed to quantify relationships among populations of predators, prey, and algae at the base of the food web; latitude; and exploitation status over a continental scale.

As expected, no-take marine reserves--where fishing is prohibited--led to long-term increases in predator population sizes.

"This is good news for fishers, because as populations increase, the fish don't recognize the reserve boundaries and are likely to 'spill over' into adjacent areas where fishing is allowed, creating a kind of insurance policy whereby marine reserves ensure the ability of fishers to catch fish into the future," said Madin.

Surprisingly though, the team found that in the tropics, the system tends to be driven predominantly by bottom-up forcing, whereas colder, temperate ecosystems are more driven by top-down forcing.

"I assumed at the start of the project that in places where fishing pressure was high and predators were depleted, we would see consequent increases in the population sizes of the predators' prey species, and the decreases in the prey's prey species," explained Madin. "However, in the tropical part of our study system, that is, Australia's Great Barrier Reef, this simply wasn't the case. This result had me scratching my head for quite some time, until I realized that this type of domino effect, called a trophic cascade, is simply a real, but rare, phenomenon in the tropics."

These kinds of continent-scale analyses are only possible with large, long-term datasets. 

This study relied on data from the AIMS long-term coral reef monitoring program and the UTas Australian Temperate Reef Collaboration--creating one enormous, continental-scale reef dataset.

"Only by looking at the very big picture, it turned out, were we able to find these trends," said Madin. 

Predator loss is now a globally pervasive phenomenon that touches nearly every marine ecosystem on the planet. Ecosystem destabilization is a widely-assumed consequence of predator loss. However, the extent to which top-down versus bottom-up forcing predominates in different types of marine systems is not definitively understood.  

"Understanding how our fisheries are likely to impact other parts of the food web is important in making the best possible decisions in terms of how we manage our fisheries," said Madin. "By understanding how coral reef food webs are likely to respond to fishing pressure, or conversely to marine reserves, we can make more informed decisions about how much fishing our reefs can safely handle. Likewise, this knowledge gives us a better idea of what will happen when we create marine reserves designed to serve as an insurance policy so communities can continue to catch fish long into the future."   

Madin was recently granted a prestigious CAREER award, offered by the National Science Foundation in support of early-career faculty who have the potential to serve as academic role models in research and education. With the funding, Madin will focus on understanding what food web interactions can reveal about how coral reefs worldwide are faring as fishing pressure increases or decreases. Interwoven with this research program will be an education and outreach program to help students develop cutting-edge technological skills relevant to marine research and help students and the public understand the importance of coral reefs to Hawai'i through visual arts, specifically, the creation of reef-inspired public murals. 

University of Hawaii at Manoa

Related Coral Reefs Articles:

Shedding light on coral reefs
New research published in the journal Coral Reefs generates the largest characterization of coral reef spectral data to date.
Uncovering the hidden life of 'dead' coral reefs
'Dead' coral rubble can support more animals than live coral, according to University of Queensland researchers trialling a high-tech sampling method.
Collaboration is key to rebuilding coral reefs
The most successful and cost-effective ways to restore coral reefs have been identified by an international group of scientists, after analyzing restoration projects in Latin America.
Coral reefs show resilience to rising temperatures
Rising ocean temperatures have devastated coral reefs all over the world, but a recent study in Global Change Biology has found that reefs in the Eastern Tropical Pacific region may prove to be an exception.
Genetics could help protect coral reefs from global warming
The research provides more evidence that genetic-sequencing can reveal evolutionary differences in reef-building corals that one day could help scientists identify which strains could adapt to warmer seas.
Tackling coral reefs' thorny problem
Researchers from the Okinawa Institute of Science and Technology Graduate University (OIST) have revealed the evolutionary history of the crown-of-thorns starfish -- a predator of coral that can devastate coral reefs.
The state of coral reefs in the Solomon Islands
The ''Global Reef Expedition: Solomon Islands Final Report'' summarizes the foundation's findings from a monumental research mission to study corals and reef fish in the Solomon Islands and provides recommendations on how to preserve these precious ecosystems into the future.
Mysterious glowing coral reefs are fighting to recover
A new study by the University of Southampton has revealed why some corals exhibit a dazzling colorful display, instead of turning white, when they suffer 'coral bleaching' -- a condition which can devastate reefs and is caused by ocean warming.
Can coral reefs 'have it all'?
A new study outlines how strategic placement of no-fishing marine reserves can help coral reef fish communities thrive.
Coral reefs 'weathering' the pressure of globalization
More information about the effects human activities have on Southeast Asian coral reefs has been revealed, with researchers looking at how large-scale global pressures, combined with the El Niño Southern Oscillation (ENSO) climate pattern, can detrimentally impact these delicate marine ecosystems.
More Coral Reefs News and Coral Reefs Current Events

Trending Science News

Current Coronavirus (COVID-19) News

Top Science Podcasts

We have hand picked the top science podcasts of 2020.
Now Playing: TED Radio Hour

Warped Reality
False information on the internet makes it harder and harder to know what's true, and the consequences have been devastating. This hour, TED speakers explore ideas around technology and deception. Guests include law professor Danielle Citron, journalist Andrew Marantz, and computer scientist Joy Buolamwini.
Now Playing: Science for the People

#576 Science Communication in Creative Places
When you think of science communication, you might think of TED talks or museum talks or video talks, or... people giving lectures. It's a lot of people talking. But there's more to sci comm than that. This week host Bethany Brookshire talks to three people who have looked at science communication in places you might not expect it. We'll speak with Mauna Dasari, a graduate student at Notre Dame, about making mammals into a March Madness match. We'll talk with Sarah Garner, director of the Pathologists Assistant Program at Tulane University School of Medicine, who takes pathology instruction out of...
Now Playing: Radiolab

How to Win Friends and Influence Baboons
Baboon troops. We all know they're hierarchical. There's the big brutish alpha male who rules with a hairy iron fist, and then there's everybody else. Which is what Meg Crofoot thought too, before she used GPS collars to track the movements of a troop of baboons for a whole month. What she and her team learned from this data gave them a whole new understanding of baboon troop dynamics, and, moment to moment, who really has the power.  This episode was reported and produced by Annie McEwen. Support Radiolab by becoming a member today at