Nav: Home

Scientists develop N-doped self-cleaning membranes that use visible light irradiation

June 30, 2020

Researchers from the Institute of Process Engineering (IPE) of the Chinese Academy of Sciences and Argonne National Laboratory (Argonne) in the U.S. have recently employed atomic layer deposition (ALD) to fabricate visible light-activated membranes that efficiently utilize solar energy.

The study was published in Advanced Functional Materials on June 30.

This research is important because membranes are among the most promising means of delivering increased supplies of fit-for-purpose water. However, membrane fouling remains a critical issue restricting their widespread application.

The modified membrane in this study exhibits outstanding antifouling and in situ self-cleaning performance under visible light irradiation.

Coupling photocatalysis with membrane separation has previously been proposed as a potentially effective way to reduce membrane fouling. However, materials used in photocatalysis limit the use of low-cost sources such as sunlight due to their large bandgaps.

To solve this problem, the researchers fabricated a visible light-activated photocatalytic film by doping nitrogen into the lattice of TiO2 deposited on commercial ceramic membranes using ALD.

The N-TiO2 coating endowed membranes with a capacity for effective in situ self-cleaning and enhanced stability under solar irradiation owing to the redox reactions between organic foulants and generated reactive oxygen species (ROS) as well as the increase in surface hydrophilicity.

The synergy between membrane separation and redox reactions involving organic pollutants and ROS produced by the visible light-activated layer suggests a possibility for stable and sustainable membrane operation under in situ solar irradiation.

The researchers also highlighted the importance of ALD technology in fabricating the membranes.

Prof. LUO Jianquan from IPE said that the study "opens a door" to applying ALD technology to membrane surface modification for fouling control.

Seth B. Darling, a co-author from Argonne, noted that the current research is "among the first successful demonstrations of real-time self-cleaning of a membrane during operation." He also said that ALD is a powerful tool for improving the performance of membrane separations beyond fouling mitigation.

N-doped photocatalytic films and ALD offer promise for using solar energy to effectively control membrane fouling and for establishing a sustainable membrane separation system.

Chinese Academy of Sciences Headquarters

Related Solar Energy Articles:

CU Denver researcher analyzes the use of solar energy at US airports
By studying 488 public airports in the United States, University of Colorado Denver School of Public Affairs researcher Serena Kim, PhD, found that 20% of them have adopted solar photovoltaic (PV), commonly known as solar panels, over the last decade.
Researchers develop molecule to store solar energy
Researchers at Linköping University, Sweden, have developed a molecule that absorbs energy from sunlight and stores it in chemical bonds.
Converting solar energy to hydrogen fuel, with help from photosynthesis
Global economic growth comes with increasing demand for energy, but stepping up energy production can be challenging.
New nanodevice could use solar energy to produce hydrogen
Amsterdam, June 9, 2020 - Solar energy is considered by some to be the ultimate solution to address the current energy crisis and global warming and the environmental crises brought about by excessive consumption of fossil fuels.
Physicists develop approach to increase performance of solar energy
Experimental condensed matter physicists in the Department of Physics at the University of Oklahoma have developed an approach to circumvent a major loss process that currently limits the efficiency of commercial solar cells.
Lasers etch a 'perfect' solar energy absorber
In Light: Science and Applications, University of Rochester researchers demonstrate how laser etching of metallic surfaces creates the ''perfect solar energy absorber.'' This not only enhances energy absorption from sunlight, but also reduces heat dissipation at other wavelengths.
Mapping the energy transport mechanism of chalcogenide perovskite for solar energy use
Researchers from Lehigh University have, for the first time, revealed first-hand knowledge about the fundamental energy carrier properties of chalcogenide perovskite CaZrSe3, important for potential solar energy use.
New hybrid device can both capture and store solar energy
Researchers have reported a new device that can both efficiently capture solar energy and store it until it is needed, offering promise for applications ranging from power generation to distillation and desalination.
Materials that can revolutionize how light is harnessed for solar energy
Columbia scientists designed organic molecules capable of generating two excitons per photon of light, a process called singlet fission.
Solar energy becomes biofuel without solar cells
Soon we will be able to replace fossil fuels with a carbon-neutral product created from solar energy, carbon dioxide and water.
More Solar Energy News and Solar Energy Current Events

Trending Science News

Current Coronavirus (COVID-19) News

Top Science Podcasts

We have hand picked the top science podcasts of 2020.
Now Playing: TED Radio Hour

Warped Reality
False information on the internet makes it harder and harder to know what's true, and the consequences have been devastating. This hour, TED speakers explore ideas around technology and deception. Guests include law professor Danielle Citron, journalist Andrew Marantz, and computer scientist Joy Buolamwini.
Now Playing: Science for the People

#576 Science Communication in Creative Places
When you think of science communication, you might think of TED talks or museum talks or video talks, or... people giving lectures. It's a lot of people talking. But there's more to sci comm than that. This week host Bethany Brookshire talks to three people who have looked at science communication in places you might not expect it. We'll speak with Mauna Dasari, a graduate student at Notre Dame, about making mammals into a March Madness match. We'll talk with Sarah Garner, director of the Pathologists Assistant Program at Tulane University School of Medicine, who takes pathology instruction out of...
Now Playing: Radiolab

How to Win Friends and Influence Baboons
Baboon troops. We all know they're hierarchical. There's the big brutish alpha male who rules with a hairy iron fist, and then there's everybody else. Which is what Meg Crofoot thought too, before she used GPS collars to track the movements of a troop of baboons for a whole month. What she and her team learned from this data gave them a whole new understanding of baboon troop dynamics, and, moment to moment, who really has the power.  This episode was reported and produced by Annie McEwen. Support Radiolab by becoming a member today at