Nav: Home

Light from inside the tunnel

June 30, 2020

Steering and monitoring the light-driven motion of electrons inside matter on the time-scale of a single optical cycle is a key challenge in ultrafast light wave electronics and laser-based material processing. Physicists from the Max Born Institute in Berlin and the University of Rostock have now revealed a so-far overlooked nonlinear optical mechanism that emerges from the light-induced tunneling of electrons inside dielectrics. For intensities near the material damage threshold, the nonlinear current arising during tunneling becomes the dominant source of bright bursts of light, which are low-order harmonics of the incident radiation. These findings, which have just been published in Nature Physics, significantly expand both the fundamental understanding of optical non-linearity in dielectric materials and its potential for applications in information processing and light-based material processing.

Our current understanding of non-linear optics at moderate light intensities is based on the so-called Kerr non-linearity, which describes the non-linear displacement of tightly bound electrons under the influence of an incident optical light field. This picture changes dramatically when the intensity of this light field is sufficiently high to eject bound electrons from their ground state. At long wavelengths of the incident light field, this scenario is associated with the phenomenon of tunneling, a quantum process where an electron performs a classically forbidden transit through a barrier formed by the combined action of the light force and the atomic potential.

Already since the 1990's and pioneered by studies from the Canadian scientist François Brunel, the motion of electrons that have emerged at the "end of the tunnel", which happens with maximal probability at the crest of the light wave, has been considered as an important source for optical non-linearity. This picture has now changed fundamentally. "In the new experiment on glass, we could show that the current associated with the quantum mechanical tunneling process itself creates an optical non-linearity that surpasses the traditional Brunel mechanism", explains Dr. Alexandre Mermillod-Blondin from the Max Born Institute for Nonlinear Optics and Short Pulse Spectroscopy, who supervised the experiment. In the experiment, two ultrashort light pulses with different wavelengths and slightly different propagation directions were focused onto a thin slab of glass, and a time- and frequency-resolved analysis of the emerging light emission was performed.

Identification of the mechanism responsible for this emission was made possible by a theoretical analysis of the measurements that was performed by the group of Prof. Thomas Fennel, who works at the University of Rostock and at the Max Born Institute in the framework of a DFG Heisenberg Professorship. "The analysis of the measured signals in terms of a quantity that we termed the effective non-linearity was key to distinguish the new ionization current mechanism from other possible mechanisms and to demonstrate its dominance", explains Fennel.

Future studies using this knowledge and the novel metrology method that was developed in the course of this work may enable researchers to temporally resolve and steer strong-field ionization and avalanching in dielectric materials with unprecedented resolution, ultimately possibly on the time-scale of a single cycle of light.
-end-


Forschungsverbund Berlin

Related Electrons Articles:

Self-imaging of a molecule by its own electrons
Researchers at the Max Born Institute (MBI) have shown that high-resolution movies of molecular dynamics can be recorded using electrons ejected from the molecule by an intense laser field.
Electrons in the fast lane
Microscopic structures could further improve perovskite solar cells
Laser takes pictures of electrons in crystals
Microscopes of visible light allow to see tiny objects as living cells and their interior.
Plasma electrons can be used to produce metallic films
Computers, mobile phones and all other electronic devices contain thousands of transistors, linked together by thin films of metal.
Flatter graphene, faster electrons
Scientists from the Swiss Nanoscience Institute and the Department of Physics at the University of Basel developed a technique to flatten corrugations in graphene layers.
Researchers develop one-way street for electrons
The work has shown that these electron ratchets create geometric diodes that operate at room temperature and may unlock unprecedented abilities in the illusive terahertz regime.
Photons and electrons one on one
The dynamics of electrons changes ever so slightly on each interaction with a photon.
Using light to put a twist on electrons
Method with polarized light can create and measure nonsymmetrical states in a layered material.
What if we could teach photons to behave like electrons?
The researchers tricked photons - which are intrinsically non-magnetic - into behaving like charged electrons.
Electrons in rapid motion
Researchers observe quantum interferences in real-time using a new extreme ultra-violet light spectroscopy technique.
More Electrons News and Electrons Current Events

Trending Science News

Current Coronavirus (COVID-19) News

Top Science Podcasts

We have hand picked the top science podcasts of 2020.
Now Playing: TED Radio Hour

Listen Again: The Power Of Spaces
How do spaces shape the human experience? In what ways do our rooms, homes, and buildings give us meaning and purpose? This hour, TED speakers explore the power of the spaces we make and inhabit. Guests include architect Michael Murphy, musician David Byrne, artist Es Devlin, and architect Siamak Hariri.
Now Playing: Science for the People

#576 Science Communication in Creative Places
When you think of science communication, you might think of TED talks or museum talks or video talks, or... people giving lectures. It's a lot of people talking. But there's more to sci comm than that. This week host Bethany Brookshire talks to three people who have looked at science communication in places you might not expect it. We'll speak with Mauna Dasari, a graduate student at Notre Dame, about making mammals into a March Madness match. We'll talk with Sarah Garner, director of the Pathologists Assistant Program at Tulane University School of Medicine, who takes pathology instruction out of...
Now Playing: Radiolab

What If?
There's plenty of speculation about what Donald Trump might do in the wake of the election. Would he dispute the results if he loses? Would he simply refuse to leave office, or even try to use the military to maintain control? Last summer, Rosa Brooks got together a team of experts and political operatives from both sides of the aisle to ask a slightly different question. Rather than arguing about whether he'd do those things, they dug into what exactly would happen if he did. Part war game part choose your own adventure, Rosa's Transition Integrity Project doesn't give us any predictions, and it isn't a referendum on Trump. Instead, it's a deeply illuminating stress test on our laws, our institutions, and on the commitment to democracy written into the constitution. This episode was reported by Bethel Habte, with help from Tracie Hunte, and produced by Bethel Habte. Jeremy Bloom provided original music. Support Radiolab by becoming a member today at Radiolab.org/donate.     You can read The Transition Integrity Project's report here.