Nav: Home

Just add sugar: How a protein's small change leads to big trouble for cells

June 30, 2020

JUNE 30, 2020, NEW YORK CITY -- In molecular biology, chaperones are a class of proteins that help regulate how other proteins fold. Folding is an important step in the manufacturing process for proteins. When they don't fold the way they're supposed to, it can lead to the development of diseases such as cancer.

Researchers at the Sloan Kettering Institute have uncovered important findings about what causes chaperones to malfunction as well as a way to fix them when they go awry. The discovery points the way to a new approach for developing targeted drugs for cancer and other diseases, including Alzheimer's disease.

"Our earlier work showed that defects in chaperones could lead to widespread changes in cells, but no one knew exactly how it happened," says SKI scientist Gabriela Chiosis, senior author of a study published June 30 in Cell Reports. "This paper finally gets into the nuts and bolts of that biochemical mechanism. I think it's a pretty big leap forward."

How a "Good Guy" Turns Bad

The research focused on a chaperone called GRP94, which plays an important role in regulating how cells respond to stress. Stress in cells is a common sign of disease, especially those related to aging, such as cancer and Alzheimer's. Dr. Chiosis has studied the role of chaperones and stress in both of these disorders for many years.

In the new study, Dr. Chiosis and her colleagues looked at changes in GRP94 in cancer cells, including cells from patients treated for breast cancer at Memorial Sloan Kettering. They found that when GRP94 undergoes a process called glycosylation, in which a sugar molecule is added, it completely changes the way that chaperone behaves.

"It goes from protein that was very floppy and flexible to one that's very rigid," explains Dr. Chiosis, a member of SKI's Chemical Biology Program. "This one change is enough to convert it from a good guy in the cell to a bad guy. That, in turn, can make the cell behave in a way that's not normal."

When GRP94 undergoes this change, it moves to a different part of the cell. Normally, it's found in the endoplasmic reticulum, where proteins are made and folded. But after the sugar is added, it moves to the part of the cell called the plasma membrane. This leads to widespread dysfunction of proteins and a more aggressive cancer.

Finding a Prototype for Future Drugs

The researchers report in the paper that they have already identified a small molecule that acts on GRP94 in the plasma membrane, called PU-WS13. This molecule appears to repair the defects in GRP94, allowing it to behave normally again.

"The changes that we saw only happen in diseased cells, such as cancer cells or those related to Alzheimer's," Dr. Chiosis says. "That makes them a good target for therapies because healthy cells are unlikely to be affected."

But Dr. Chiosis explains that more research is needed before a new drug can be developed based on this approach. "PU-WS13 is just a prototype," she says. "It has to be tailored for use in humans. We're investigating how to make this into something that might work as a drug."

This study was funded by the National Institutes of Health under grants R01 CA172546, R56 AG061869, R01 CA186866, P30 CA08748, and P50 CA192937; William H. Goodwin and Alice Goodwin and the Commonwealth Foundation for Cancer Research, through the Experimental Therapeutics Center of MSK; the Lymphoma Research Foundation; and the Steven A. Greenberg Charitable Trust.

Dr. Chiosis and several of her co-authors are inventors on patents covering PU-WS13 and related science. Dr. Chiosis is also a founder of Samus Therapeutics and a member of its board of directors.
-end-
About Memorial Sloan Kettering (MSK):

As the world's oldest and largest private cancer center, Memorial Sloan Kettering has devoted more than 135 years to exceptional patient care, influential educational programs, and innovative research to discover more effective strategies to prevent, control and, ultimately, cure cancer. MSK is home to more than 20,000 physicians, scientists, nurses, and staff united by a relentless dedication to conquering cancer. Today, we are one of 51 National Cancer Institute-designated Comprehensive Cancer Centers, with state-of-the-art science and technology supporting groundbreaking clinical studies, personalized treatment, and compassionate care for our patients. We also train the next generation of clinical and scientific leaders in oncology through our continually evolving educational programs, here and around the world. Year after year, we are ranked among the top two cancer hospitals in the country, consistently recognized for our expertise in adult and pediatric oncology specialties. http://www.mskcc.org.

Memorial Sloan Kettering Cancer Center

Related Cancer Articles:

UCI researchers uncover cancer cell vulnerabilities; may lead to better cancer therapies
A new University of California, Irvine-led study reveals a protein responsible for genetic changes resulting in a variety of cancers, may also be the key to more effective, targeted cancer therapy.
Breast cancer treatment costs highest among young women with metastic cancer
In a fight for their lives, young women, age 18-44, spend double the amount of older women to survive metastatic breast cancer, according to a large statewide study by the University of North Carolina at Chapel Hill.
Cancer mortality continues steady decline, driven by progress against lung cancer
The cancer death rate declined by 29% from 1991 to 2017, including a 2.2% drop from 2016 to 2017, the largest single-year drop in cancer mortality ever reported.
Stress in cervical cancer patients associated with higher risk of cancer-specific mortality
Psychological stress was associated with a higher risk of cancer-specific mortality in women diagnosed with cervical cancer.
Cancer-sniffing dogs 97% accurate in identifying lung cancer, according to study in JAOA
The next step will be to further fractionate the samples based on chemical and physical properties, presenting them back to the dogs until the specific biomarkers for each cancer are identified.
Moffitt Cancer Center researchers identify one way T cell function may fail in cancer
Moffitt Cancer Center researchers have discovered a mechanism by which one type of immune cell, CD8+ T cells, can become dysfunctional, impeding its ability to seek and kill cancer cells.
More cancer survivors, fewer cancer specialists point to challenge in meeting care needs
An aging population, a growing number of cancer survivors, and a projected shortage of cancer care providers will result in a challenge in delivering the care for cancer survivors in the United States if systemic changes are not made.
New cancer vaccine platform a potential tool for efficacious targeted cancer therapy
Researchers at the University of Helsinki have discovered a solution in the form of a cancer vaccine platform for improving the efficacy of oncolytic viruses used in cancer treatment.
American Cancer Society outlines blueprint for cancer control in the 21st century
The American Cancer Society is outlining its vision for cancer control in the decades ahead in a series of articles that forms the basis of a national cancer control plan.
Oncotarget: Cancer pioneer employs physics to approach cancer in last research article
In the cover article of Tuesday's issue of Oncotarget, James Frost, MD, PhD, Kenneth Pienta, MD, and the late Donald Coffey, Ph.D., use a theory of physical and biophysical symmetry to derive a new conceptualization of cancer.
More Cancer News and Cancer Current Events

Trending Science News

Current Coronavirus (COVID-19) News

Top Science Podcasts

We have hand picked the top science podcasts of 2020.
Now Playing: TED Radio Hour

Warped Reality
False information on the internet makes it harder and harder to know what's true, and the consequences have been devastating. This hour, TED speakers explore ideas around technology and deception. Guests include law professor Danielle Citron, journalist Andrew Marantz, and computer scientist Joy Buolamwini.
Now Playing: Science for the People

#576 Science Communication in Creative Places
When you think of science communication, you might think of TED talks or museum talks or video talks, or... people giving lectures. It's a lot of people talking. But there's more to sci comm than that. This week host Bethany Brookshire talks to three people who have looked at science communication in places you might not expect it. We'll speak with Mauna Dasari, a graduate student at Notre Dame, about making mammals into a March Madness match. We'll talk with Sarah Garner, director of the Pathologists Assistant Program at Tulane University School of Medicine, who takes pathology instruction out of...
Now Playing: Radiolab

How to Win Friends and Influence Baboons
Baboon troops. We all know they're hierarchical. There's the big brutish alpha male who rules with a hairy iron fist, and then there's everybody else. Which is what Meg Crofoot thought too, before she used GPS collars to track the movements of a troop of baboons for a whole month. What she and her team learned from this data gave them a whole new understanding of baboon troop dynamics, and, moment to moment, who really has the power.  This episode was reported and produced by Annie McEwen. Support Radiolab by becoming a member today at Radiolab.org/donate.